Developing optimized tissue phantom systems for optical biopsies

被引:8
作者
Beck, GC [1 ]
Akgun, N [1 ]
Ruck, A [1 ]
Steiner, R [1 ]
机构
[1] Inst Lasertechnol Med Messtech, D-89081 Ulm, Germany
来源
OPTICAL BIOPSIES AND MICROSCOPIC TECHNIQUES II | 1997年 / 3197卷
关键词
optical tissue phantom; Mie theory; radiation transport; particles; scattering; absorption; fluorescence;
D O I
10.1117/12.297954
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a scheme by which tissue phantom systems can be designed rapidly and systematically according to individual demands. For the optical biopsies, organ structures of biological tissues have to be modeled which requires a solid host material determining the modeling potentialities. Complex structures of biological tissues can be modeled by phantom systems based on a solid host material which determines the modeling potentialities. Mie theory shows that scattering and absorption of particles depends strongly on their material constants and size distribution. According to these predicitons particles can be selected or produced. Particles are not only useful to induce scattering but can also be an interesting alternative to absorbing and fluorescent dyes. We present organic, metallic and mineralic particles, their relevant properties and outlines of their characterization. We discuss how the predictions of theory and mutual interactions between components can be checked and report on problems frequently encountered with dyes and particles as components of tissue phantom systems.
引用
收藏
页码:76 / 85
页数:10
相关论文
empty
未找到相关数据