A linear time algorithm for the weighted lexicographic rectilinear 1-center problem in the plane

被引:3
作者
Halman, N [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
algorithms;
D O I
10.1016/S0020-0190(02)00489-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an optimal O(n) time algorithm for the weighted lexicographic rectilinear 1-center problem in the plane and prove that calculating the optimal value of the objective function requires a (n log n) time. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 12 条
[1]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[2]  
DREZNER Z, 1987, NAV RES LOG, V34, P229, DOI 10.1002/1520-6750(198704)34:2<229::AID-NAV3220340207>3.0.CO
[3]  
2-1
[5]   NUCLEOLUS AS A SOLUTION OF A MINIMIZATION PROBLEM [J].
KOHLBERG, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 23 (01) :34-&
[6]   THE POWER OF GEOMETRIC DUALITY REVISITED [J].
LEE, DT ;
CHING, YT .
INFORMATION PROCESSING LETTERS, 1985, 21 (03) :117-122
[7]   LINEAR-TIME ALGORITHMS FOR LINEAR-PROGRAMMING IN R3 AND RELATED PROBLEMS [J].
MEGIDDO, N .
SIAM JOURNAL ON COMPUTING, 1983, 12 (04) :759-776
[8]   THE WEIGHTED EUCLIDEAN 1-CENTER PROBLEM [J].
MEGIDDO, N .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (04) :498-504
[9]   LINEAR-PROGRAMMING IN LINEAR TIME WHEN THE DIMENSION IS FIXED [J].
MEGIDDO, N .
JOURNAL OF THE ACM, 1984, 31 (01) :114-127
[10]   On the lexicographic minimax approach to location problems [J].
Ogryczak, W .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 100 (03) :566-585