Hydrogen storage in microporous hypercrosslinked organic polymer networks

被引:606
作者
Wood, Colin D. [1 ]
Tan, Bien [1 ]
Trewin, Abbie [1 ]
Niu, Hongjun [1 ]
Bradshaw, Darren [1 ]
Rosseinsky, Matthew J. [1 ]
Khimyak, Yaroslav Z. [1 ]
Campbell, Neil L. [1 ]
Kirk, Ralph [1 ]
Stoeckel, Ev [1 ]
Cooper, Andrew I. [1 ]
机构
[1] Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/cm070356a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of hypercrosslinked polymer networks has been synthesized by the self-condensation of bischloromethyl monomers such as dichloroxylene (DCX), 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), and 9,10-bis(chloromethyl)anthracene (BCMA). These materials are predominantly microporous and exhibit Brunauer-Emmett-Teller (BET) surface areas of up to 1904 m(2)/g as measured by N-2 adsorption at 77.3 K (Langmuir surface area = 2992 m(2)/g). Networks based on BCMBP exhibit a gravimetric storage capacity of 3.68 wt % at 15 bar and 77.3 K, the highest yet reported for an organic polymer. The micro- and mesostructure of the networks is explained by a combination of solid-state NMR, gas sorption measurements, pycnometry, and molecular simulations. The isosteric heat of sorption for H-2 on these materials is found to be in the range 6-7.5 kJ/mol. A molecular model is presented for a p-DCX network that simulates well certain key physical properties such as pore volume, pore width, absolute density, and bulk density. This model also predicts the isotherm shape and isosteric heat for H-2 sorption at 77.3 and 87.2 K but overestimates the absolute degree of H-2 uptake, most likely because of a degree of occluded, inaccessible porosity in the real physical samples.
引用
收藏
页码:2034 / 2048
页数:15
相关论文
共 80 条
  • [1] Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins
    Ahn, JH
    Jang, JE
    Oh, CG
    Ihm, SK
    Cortez, J
    Sherrington, DC
    [J]. MACROMOLECULES, 2006, 39 (02) : 627 - 632
  • [2] Predictions of multilayer adsorption using lattice theory
    Aranovich, GL
    Donohue, MD
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 189 (01) : 101 - 108
  • [3] THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS
    BARRETT, EP
    JOYNER, LG
    HALENDA, PP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) : 373 - 380
  • [4] Determination of the adsorption isotherms of hydrogen on activated carbons above the Critical Temperature of the adsorbate over wide temperature and pressure ranges
    Bénard, P
    Chahine, R
    [J]. LANGMUIR, 2001, 17 (06) : 1950 - 1955
  • [5] HETERONUCLEAR DECOUPLING IN ROTATING SOLIDS
    BENNETT, AE
    RIENSTRA, CM
    AUGER, M
    LAKSHMI, KV
    GRIFFIN, RG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16) : 6951 - 6958
  • [6] Optimum conditions for adsorptive storage
    Bhatia, SK
    Myers, AL
    [J]. LANGMUIR, 2006, 22 (04) : 1688 - 1700
  • [7] Free volume and intrinsic microporosity in polymers
    Budd, PM
    McKeown, NB
    Fritsch, D
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (20) : 1977 - 1986
  • [8] Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
    Budd, PM
    Ghanem, BS
    Makhseed, S
    McKeown, NB
    Msayib, KJ
    Tattershall, CE
    [J]. CHEMICAL COMMUNICATIONS, 2004, (02) : 230 - 231
  • [9] Combination of modeling and experiment in structure analysis of intercalated layer silicates
    Capková, P
    Pospisil, M
    Weiss, Z
    [J]. JOURNAL OF MOLECULAR MODELING, 2003, 9 (03) : 195 - 205
  • [10] High H2 adsorption in a microporous metal-organic framework with open metal sites
    Chen, BL
    Ockwig, NW
    Millward, AR
    Contreras, DS
    Yaghi, OM
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) : 4745 - 4749