The heparin/heparan sulfate 2-O-sulfatase from Flavobacterium heparinum -: Molecular cloning, recombinant expression, and biochemical characterization

被引:30
作者
Myette, JR
Shriver, Z
Claycamp, C
McLean, MW
Venkataraman, G
Sasisekharan, R
机构
[1] MIT, Div Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
D O I
10.1074/jbc.M211420200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heparan sulfate glycosaminoglycans are structurally complex polysaccharides critically engaged in a wide range of cell and tissue functions. Any structure-based approach to study their respective biological functions is facilitated by the use of select heparan sulfate glycosaminoglycan-degrading enzymes with unique substrate specificities. We recently reported of one such enzyme, the Delta4,5-glycuronidase cloned from Flavobacterium heparinum and recombinantly expressed in Escherichia coli (Myette, J. R., Shriver, Z., Kiziltepe, T., McLean, M. W., Venkataraman, G., and Sasisekharan, R. (2002) Biochemistry 41, 7424-7434). In this study, we likewise report the molecular cloning of the 2-O-sulfatase from the same bacterium and its recombinant expression as a soluble, highly active enzyme. At the protein level, the flavolbacterial 2-O-sulfatase possesses considerable sequence homology to other members of a large sulfatase family, especially within its amino terminus, where the highly conserved sulfatase domain is located. Within this domain, we have identified by sequence homology the critical active site cysteine predicted to be chemically modified as a formylglycine in vivo. We also present a characterization of the biochemical properties of the enzyme as it relates to optimal in vitro reaction conditions and a kinetic description of its substrate specificity. In particular, we demonstrate that in addition to the fact that the enzyme exclusively hydrolyzes the sulfate at the 2-O-position of the uronic acid, it also exhibits a kinetic preference for highly sulfated glucosamines within each disaccharide unit, especially those possessing a 6-O-sulfate. The sulfatase also displays a clear kinetic preference for disaccharides with beta1-->4 linkages but is able, nevertheless, to hydrolyze unsaturated, 2-O-sulfated chondroitin disaccharides. Finally, we describe the substrate-product relationship of the 2-O-sulfatase to the Delta4,5-glycuronidase and the analytical value of using both of these enzymes in tandem for elucidating heparin/heparan sulfate composition.
引用
收藏
页码:12157 / 12166
页数:10
相关论文
共 40 条
[1]  
Ausubel, 1987, CURRENT PROTOCOLS MO, V1
[2]   HUMAN LIVER IDURONATE-2-SULFATASE - PURIFICATION, CHARACTERIZATION AND CATALYTIC PROPERTIES [J].
BIELICKI, J ;
FREEMAN, C ;
CLEMENTS, PR ;
HOPWOOD, JJ .
BIOCHEMICAL JOURNAL, 1990, 271 (01) :75-86
[3]   1.3 Å structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family [J].
Boltes, I ;
Czapinska, H ;
Kahnert, A ;
von Bülow, R ;
Dierks, T ;
Schmidt, B ;
von Figura, K ;
Kertesz, MA ;
Usón, I .
STRUCTURE, 2001, 9 (06) :483-491
[4]   Structure of a human lysosomal sulfatase [J].
Bond, CS ;
Clements, PR ;
Ashby, SJ ;
Collyer, CA ;
Harrop, SJ ;
Hopwood, JJ ;
Guss, JM .
STRUCTURE, 1997, 5 (02) :277-289
[5]   Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro [J].
Cohlberg, JA ;
Li, J ;
Uversky, VN ;
Fink, AL .
BIOCHEMISTRY, 2002, 41 (05) :1502-1511
[6]   Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine [J].
Dierks, T ;
Miech, C ;
Hummerjohann, J ;
Schmidt, B ;
Kertesz, MA ;
von Figura, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) :25560-25564
[7]  
DIETRICH CP, 1973, J BIOL CHEM, V248, P6408
[8]   ENZYMATIC DEGRADATION OF GLYCOSAMINOGLYCANS [J].
ERNST, S ;
LANGER, R ;
COONEY, CL ;
SASISEKHARAN, R .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 30 (05) :387-444
[9]   Expression in Escherichia coli, purification and characterization of heparinase I from Flavobacterium heparinum [J].
Ernst, S ;
Venkataraman, G ;
Winkler, S ;
Godavarti, R ;
Langer, R ;
Cooney, CL ;
Sasisekharan, R .
BIOCHEMICAL JOURNAL, 1996, 315 :589-597
[10]   Molecular diversity of heparan sulfate [J].
Esko, JD ;
Lindahl, U .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (02) :169-173