Control of gene expression through regulation of the TATA-binding protein

被引:149
作者
Pugh, BF [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, Ctr Gene Regulat, University Pk, PA USA
关键词
gene expression; general transcription factors; TATA-binding protein; TAFs; TBP; TFIID;
D O I
10.1016/S0378-1119(00)00288-2
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The assembly of transcription complexes at eukaryotic promoters involves a number of distinct steps including chromatin remodeling, and recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme. Each of these stages is controlled by both positive and negative factors. In this review, mechanisms that regulate the interactions of TBP with promoter DNA are described. The first is autorepression, where TBP sequesters its DNA-binding surface through dimerization. Once TBP is bound to DNA, factors such as TAF(II)250 and Motl induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the TBP/DNA complex into an inactive state. TFIIA antagonizes these TBP repressors but may be effective only in conjunction with the recruitment of the RNA. polymerase II holoenzyme by promoter-bound activators. Taken together, the ability to induce a gene may depend minimally upon the ability to remodel chromatin as well as alleviate direct repression of TBP and other components of the general transcription machinery. The magnitude by which an activated gene is expressed, and thus repeatedly transcribed, might depend in part on competition between TBP inhibitors and the holoenzyme for access to the TBP/TATA complex. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 157 条
[1]   Cyclin D1 associates with the TBP-associated factor TAFII250 to regulate Sp1-mediated transcription [J].
Adnane, J ;
Shao, ZH ;
Robbins, PD .
ONCOGENE, 1999, 18 (01) :239-247
[2]   Three-dimensional structure of the human TFIID-IIA-IIB complex [J].
Andel, F ;
Ladurner, AG ;
Inouye, C ;
Tjian, R ;
Nogales, E .
SCIENCE, 1999, 286 (5447) :2153-2156
[3]   Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA [J].
Apone, LM ;
Virbasius, CA ;
Holstege, FCP ;
Wang, J ;
Young, RA ;
Green, MR .
MOLECULAR CELL, 1998, 2 (05) :653-661
[4]   TBP MUTANTS DEFECTIVE IN ACTIVATED TRANSCRIPTION IN-VIVO [J].
ARNDT, KM ;
RICUPEROHOVASSE, S ;
WINSTON, F .
EMBO JOURNAL, 1995, 14 (07) :1490-1497
[5]   AN ATP-DEPENDENT INHIBITOR OF TBP BINDING TO DNA [J].
AUBLE, DT ;
HAHN, S .
GENES & DEVELOPMENT, 1993, 7 (05) :844-856
[6]   MOT1, A GLOBAL REPRESSOR OF RNA-POLYMERASE-II TRANSCRIPTION, INHIBITS TBP BINDING TO DNA BY AN ATP-DEPENDENT MECHANISM [J].
AUBLE, DT ;
HANSEN, KE ;
MUELLER, CGF ;
LANE, WS ;
THORNER, J ;
HAHN, S .
GENES & DEVELOPMENT, 1994, 8 (16) :1920-1934
[7]   Structure-function analysis of TAF130: Identification and characterization of a high-affinity TATA binding protein interaction domain in the N terminus of yeast TAF(II)130 [J].
Bai, Y ;
Perez, GM ;
Beechem, JM ;
Weil, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (06) :3081-3093
[8]  
Bai YL, 1999, MOL CELL BIOL, V19, P6642
[9]   CONTACT WITH A COMPONENT OF THE POLYMERASE-II HOLOENZYME SUFFICES FOR GENE ACTIVATION [J].
BARBERIS, A ;
PEARLBERG, J ;
SIMKOVICH, N ;
FARRELL, S ;
REINAGEL, P ;
BAMDAD, C ;
SIGAL, G ;
PTASHNE, M .
CELL, 1995, 81 (03) :359-368
[10]   Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters [J].
Belotserkovskaya, R ;
Sterner, DE ;
Deng, M ;
Sayre, MH ;
Lieberman, PM ;
Berger, SL .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (02) :634-647