Five-loop vacuum energy β function in φ4 theory with O(N)-symmetric and cubic interactions

被引:26
作者
Kastening, B [1 ]
机构
[1] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 06期
关键词
D O I
10.1103/PhysRevD.57.3567
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The beta function of the vacuum energy density is analytically computed at the five-loop level in O(N)-symmetric phi(4) theory, using dimensional regularization in conjunction with the <(MS)over bar> scheme. The result for the case of cubic anisotropy is also given. It is pointed but how to also obtain the beta function of the coupling and the gamma function of the mass from vacuum graphs. This method may be easier than traditional approaches.
引用
收藏
页码:3567 / 3578
页数:12
相关论文
共 14 条
[2]  
Broadhurst D. J, 1985, OUT410218 OP U
[3]   SIMPLE APPROACH TO RENORMALIZATION THEORY [J].
CASWELL, WE ;
KENNEDY, AD .
PHYSICAL REVIEW D, 1982, 25 (02) :392-408
[4]   INTEGRATION BY PARTS - THE ALGORITHM TO CALCULATE BETA-FUNCTIONS IN 4-LOOPS [J].
CHETYRKIN, KG ;
TKACHOV, FV .
NUCLEAR PHYSICS B, 1981, 192 (01) :159-204
[5]   INFRARED R-OPERATION AND ULTRAVIOLET COUNTERTERMS IN THE MS-SCHEME [J].
CHETYRKIN, KG ;
TKACHOV, FV .
PHYSICS LETTERS B, 1982, 114 (05) :340-344
[6]   R-STAR-OPERATION CORRECTED [J].
CHETYRKIN, KG ;
SMIRNOV, VA .
PHYSICS LETTERS B, 1984, 144 (5-6) :419-424
[7]   NEW METHODS FOR RENORMALIZATION GROUP [J].
COLLINS, JC ;
MACFARLANE, AJ .
PHYSICAL REVIEW D, 1974, 10 (04) :1201-1212
[8]   Four-loop vacuum energy beta function in O(N) symmetric scalar theory [J].
Kastening, B .
PHYSICAL REVIEW D, 1996, 54 (06) :3965-3975
[9]   5-LOOP RENORMALIZATION-GROUP FUNCTIONS OF O(N)-SYMMETRICAL PHI-4-THEORY AND EPSILON-EXPANSIONS OF CRITICAL EXPONENTS UP TO EPSILON-5 (VOL B272, PG 39, 1991) [J].
KLEINERT, H ;
NEU, J ;
SCHULTEFROHLINDE, V ;
CHETYRKIN, KG ;
LARIN, SA .
PHYSICS LETTERS B, 1993, 319 (04) :545-545
[10]   5-LOOP RENORMALIZATION-GROUP FUNCTIONS OF O (N)-SYMMETRICAL PHI-4-THEORY AND EPSILON-EXPANSIONS OF CRITICAL EXPONENTS UP TO EPSILON-5 [J].
KLEINERT, H ;
NEU, J ;
SCHULTEFROHLINDE, V ;
CHETYRKIN, KG ;
LARIN, SA .
PHYSICS LETTERS B, 1991, 272 (1-2) :39-44