Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres

被引:667
作者
Wang, Xi [1 ,2 ]
Wu, Xing-Long [2 ,3 ]
Guo, Yu-Guo [3 ]
Zhong, Yeteng [1 ,2 ]
Cao, Xinqiang [1 ,2 ]
Ma, Ying [1 ]
Yao, Jiannian [1 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Photochem, Inst Chem, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Chem, BNLMS, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ION BATTERIES; CAVITY SIZE; MICROSPHERES; NANOMATERIALS; NANOCRYSTALS; NANOSPHERES; PERFORMANCE; FABRICATION; CONVERSION; CAPACITY;
D O I
10.1002/adfm.200902295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-, double-, and triple-shelled hollow spheres assembled by Co3O4 nanosheets are successfully synthesized through a novel method. The possible formation mechanism of these novel structures was investigated using powder X-ray diffraction, scanning and transmission electron microscopies, Fourier transform IR, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Both poly(vinylpyrrolidone) (PVP) soft templates and the formation of cobalt glycolate play key roles in the formation of these novel multishelled hollow structures. When tested as the anode material in lithium-ion batteries (LIBs), these multishelled microspheres exhibit excellent cycling performance, good rate capacity, and enhanced lithium storage capacity. This superior cyclic stability and capacity result from the synergetic effect of small diffusion lengths in the nanosheet building blocks and sufficient void space to buffer the volume expansion. This facile strategy may be extended to synthesize other transition metal oxide materials with hollow multishelled micro-inanostrucutures, which may find application in sensors and catalysts due to their unique structural features.
引用
收藏
页码:1680 / 1686
页数:7
相关论文
共 44 条
[1]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J].
Cao, AM ;
Hu, JS ;
Liang, HP ;
Wan, LJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (28) :4391-4395
[4]  
Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
[5]  
2-N
[6]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[7]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[8]   RETRACTED: RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles (Retracted Article) [J].
Gugliotti, LA ;
Feldheim, DL ;
Eaton, BE .
SCIENCE, 2004, 304 (5672) :850-852
[9]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[10]   Ethylene glycol-mediated synthesis of metal oxide nanowires [J].
Jiang, XC ;
Wang, YL ;
Herricks, T ;
Xia, YN .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) :695-703