Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity

被引:942
作者
Cong, Ye
Zhang, Jinlong
Chen, Feng
Anpo, Masakazu
机构
[1] E China Univ Sci & Technol, Adv Mat Lab, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Inst Fine Chem, Shanghai 200237, Peoples R China
[3] Osaka Prefecture Univ, Grad Sch Engn, Osaka 5998531, Japan
关键词
D O I
10.1021/jp0685030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped TiO2 nanocatalysts with a homogeneous anatase structure were successfully synthesized through a microemulsion-hydrothermal method by using some organic compounds such as triethylamine, urea, thiourea, and hydrazine hydrate. Analysis by Raman and X-ray photoemission spectroscopy indicated that nitrogen was doped effectively and most nitrogen dopants might be present in the chemical environment of Ti-O-N and O-Ti-N. A shift of the absorption edge to a lower energy and a stronger absorption in the visible light region were observed. The results of photodegradation or the organic pollutant rhodamine B in the visible light irradiation (lambda > 420 nm) suggested that the TiO2 photocatalysts after nitrogen doping were greatly improved compared with the undoped TiO2 photocatalysts and Degussa P-25; especially the nitrogen-doped TiO2 using triathylamine as the nitrogen source showed the highest photocatalytic activity, which also showed a higher efficiency for photodecomposition of 2,4-dichlorophenol. The nitrogen doping concentration had an optimal value, and accordingly, the photocatalyst showed the highest photocatalytic activity. This suggested that nitrogen doping has important effects on the improvement of photocatalytic activity: on one hand, nitrogen doping could narrow the band gap of titania to extend the adsorption of catalyst to the visible light region; on the other hand, nitrogen doping could inhibit the recombination of the photoinduced electron and thereafter increase the efficiency of the photocurrent carrier.
引用
收藏
页码:6976 / 6982
页数:7
相关论文
共 42 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   PECVD of amorphous TiO2 thin films:: effect of growth temperature and plasma gas composition [J].
Battiston, GA ;
Gerbasi, R ;
Gregori, A ;
Porchia, M ;
Cattarin, S ;
Rizzi, GA .
THIN SOLID FILMS, 2000, 371 (1-2) :126-131
[3]   GROWTH AND RAMAN-SPECTROSCOPIC CHARACTERIZATION OF TIO2 ANATASE SINGLE-CRYSTALS [J].
BERGER, H ;
TANG, H ;
LEVY, F .
JOURNAL OF CRYSTAL GROWTH, 1993, 130 (1-2) :108-112
[4]   Raman spectra of TiN/AlN superlattices [J].
Bernard, M ;
Deneuville, A ;
Thomas, O ;
Gergaud, P ;
Sandstrom, P ;
Birch, J .
THIN SOLID FILMS, 2000, 380 (1-2) :252-255
[5]   Phonon confinement effects in the Raman scattering by TiO2 nanocrystals [J].
Bersani, D ;
Lottici, PP ;
Ding, XZ .
APPLIED PHYSICS LETTERS, 1998, 72 (01) :73-75
[6]   Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J].
Chen, XB ;
Burda, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15446-15449
[7]   Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:: Characterization and photocatalytic activity for the degradation of 4-nitrophenol [J].
Di Paola, A ;
Marcì, G ;
Palmisano, L ;
Schiavello, M ;
Uosaki, K ;
Ikeda, S ;
Ohtani, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (03) :637-645
[8]   Photochemical activity of nitrogen-doped rutile TiO2(111) in visible light [J].
Diwald, O ;
Thompson, TL ;
Zubkov, T ;
Goralski, EG ;
Walck, SD ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (19) :6004-6008
[9]  
Fujishima A., 2000, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[10]   Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale [J].
Gole, JL ;
Stout, JD ;
Burda, C ;
Lou, YB ;
Chen, XB .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (04) :1230-1240