Extremal values for ratios of distances in trees

被引:34
作者
Barefoot, CA
Entringer, RC [1 ]
Szekely, LA
机构
[1] Univ New Mexico, Albuquerque, NM 87131 USA
[2] New Mexico Inst Min & Technol, Socorro, NM 87801 USA
[3] Eotvos Lorand Univ, H-1088 Budapest, Hungary
基金
美国国家科学基金会;
关键词
distance; Wiener index; trees; transmission; status;
D O I
10.1016/S0166-218X(97)00068-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The distance of a vertex u in a connected graph G is defined by sigma(u) = Sigma(v epsilon V(G)) d(u, v) and the distance of G is given by sigma(G) = 1/2 Sigma(u epsilon V(G))sigma(u). Extremal values for the ratios sigma(T)/sigma(v), sigma(T)/sigma(w)/sigma(w)/sigma(v), and sigma(w)/sigma(u) are determined where T is a tree of order n, v is a centroid vertex of T, and w and u are end vertices of T.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 18 条
[1]  
Burns K, 1995, COMBINATORICS GRAPH, P323
[2]   DETERMINATION OF THE WIENER MOLECULAR BRANCHING INDEX FOR THE GENERAL TREE [J].
CANFIELD, ER ;
ROBINSON, RW ;
ROUVRAY, DH .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1985, 6 (06) :598-609
[3]  
Entringer R., 1997, Journal of Combinatorial Mathematics and Combinatorial Computing, V24, P65
[4]  
Entringer R., 1994, AUSTRALAS J COMB, V10, P211, DOI DOI 10.1023/A:1010767517079
[5]  
Entringer R.C., 1996, Bull. Inst. Comb. Appl., V17, P71
[6]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[7]  
ENTRINGER RC, UNPUB BOUNDS AVERAGE
[8]  
GUTMAN I, NEW METHOD CALCULATI
[9]  
GUTMAN I, RECENT RESULTS THEOR
[10]   COMPLEXITY OF NETWORK DESIGN PROBLEM [J].
JOHNSON, DS ;
LENSTRA, JK ;
RINNOOYKAN, AHG .
NETWORKS, 1978, 8 (04) :279-285