Data-Driven Discovery of Photoactive Quaternary Oxides Using First-Principles Machine Learning

被引:46
作者
Davies, Daniel W. [1 ]
Butler, Keith T. [2 ]
Walsh, Aron [1 ,3 ,4 ]
机构
[1] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[2] Rutherford Appleton Lab, Sci Comp Div, SciML, Didcot OX11 0QX, Oxon, England
[3] Yonsei Univ, Global E3 Inst, Seoul 120749, South Korea
[4] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; CHEMICAL-COMPOSITION; SEMICONDUCTORS; GENERATION; PREDICTION; DESIGN;
D O I
10.1021/acs.chemmater.9b01519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a low-cost, virtual high-throughput materials design workflow and use it to identify earth-abundant materials for solar energy applications from the quaternary oxide chemical space. A statistical model that predicts bandgap from chemical composition is built using supervised machine learning. The trained model forms the first in a hierarchy of screening steps. An ionic substitution algorithm is used to assign crystal structures, and an oxidation state probability model is used to discard unlikely chemistries. We demonstrate the utility of this process for screening over 1 million oxide compositions. We find that, despite the difficulties inherent to identifying stable multicomponent inorganic materials, several compounds produced by our workflow are calculated to be thermodynamically stable or metastable and have desirable optoelectronic properties according to first-principles calculations. The predicted oxides are Li2MnSiO5, MnAg(SeO3)(2), and two polymorphs of MnCdGe2O6, all four of which are found to have direct electronic bandgaps in the visible range of the solar spectrum.
引用
收藏
页码:7221 / 7230
页数:10
相关论文
共 70 条
[1]   Thermodynamic limit for synthesis of metastable inorganic materials [J].
Aykol, Muratahan ;
Dwaraknath, Shyam S. ;
Sun, Wenhao ;
Persson, Kristin A. .
SCIENCE ADVANCES, 2018, 4 (04)
[2]   Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects [J].
Bak, T ;
Nowotny, J ;
Rekas, M ;
Sorrell, CC .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (10) :991-1022
[3]  
Breiman F. J. O. R. L., 1984, CLASSIFICATION REGRE, V1
[4]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[5]   New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations [J].
Castelli, Ivano E. ;
Huser, Falco ;
Pandey, Mohnish ;
Li, Hong ;
Thygesen, Kristian S. ;
Seger, Brian ;
Jain, Anubhav ;
Persson, Kristin A. ;
Ceder, Gerbrand ;
Jacobsen, Karsten W. .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[6]   New cubic perovskites for one- and two-photon water splitting using the computational materials repository [J].
Castelli, Ivano E. ;
Landis, David D. ;
Thygesen, Kristian S. ;
Dahl, Soren ;
Chorkendorff, Ib ;
Jaramillo, Thomas F. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9034-9043
[7]   Computational screening of perovskite metal oxides for optimal solar light capture [J].
Castelli, Ivano E. ;
Olsen, Thomas ;
Datta, Soumendu ;
Landis, David D. ;
Dahl, Soren ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5814-5819
[8]   Materials discovery by chemical analogy: role of oxidation states in structure prediction [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Isayev, Olexandr ;
Walsh, Aron .
FARADAY DISCUSSIONS, 2018, 211 :553-568
[9]   Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Skelton, Jonathan M. ;
Xie, Congwei ;
Oganov, Artem R. ;
Walsh, Aron .
CHEMICAL SCIENCE, 2018, 9 (04) :1022-1030
[10]   Computational Screening of All Stoichiometric Inorganic Materials [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Jackson, Adam J. ;
Morris, Andrew ;
Frost, Jarvist M. ;
Skelton, Jonathan M. ;
Walsh, Aron .
CHEM, 2016, 1 (04) :617-627