Evidence that the heme regulatory motifs in heme oxygenase-2 serve as a Thiol/Disulfide redox switch regulating heme binding

被引:72
作者
Yi, Li [1 ]
Ragsdale, Stephen W. [1 ]
机构
[1] Univ Nebraska, Dept Biochem, Beadle Ctr, Lincoln, NE 68588 USA
关键词
D O I
10.1074/jbc.M700664200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heme oxygenase (HO) catalyzes the O-2- and NADPH-dependent conversion of heme to biliverdin, CO, and iron. The two forms of HO (HO-1 and HO-2) share similar physical properties but are differentially regulated and exhibit dissimilar physiological roles and tissue distributions. Unlike HO-1, HO-2 contains heme regulatory motifs (HRMs) (McCoubrey, W. K., Jr., Huang, T. J., and Maines, M. D. (1997) J. Biol. Chem. 272, 12568-12574). Here we describe UV-visible, EPR, and differential scanning calorimetry experiments on human HO-2 variants containing single, double, and triple mutations in the HRMs. Oxidized HO-2, which contains an intramolecular disulfide bond linking Cys(265) of HRM1 and Cys(282) of HRM2, binds heme tightly. Reduction of the disulfide bond increases the K-d for ferric heme from 0.03 to 0.3 mu M, which is much higher than the concentration of the free heme pool in cells. Although the HRMs markedly affect the K-d for heme, they do not alter the k(cat) for heme degradation and do not bind additional hemes. Because HO-2 plays a key role in CO generation and heme homeostasis, reduction of the disulfide bond would be expected to increase intracellular free heme and decrease CO concentrations. Thus, we propose that the HRMs in HO-2 constitute a thiol/ disulfide redox switch that regulates the myriad physiological functions of HO-2, including its involvement in the hypoxic response in the carotid body, which involves interactions with a Ca2+-activated potassium channel.
引用
收藏
页码:21056 / 21067
页数:12
相关论文
共 51 条
[1]  
[Anonymous], 1989, Molecular Cloning
[2]   Dealing with iron: Common structural principles in proteins that transport iron and heme [J].
Baker, HM ;
Anderson, BF ;
Baker, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3579-3583
[3]   Neural roles for heme oxygenase:: Contrasts to nitric oxide synthase [J].
Barañano, DE ;
Snyder, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :10996-11002
[4]   SIMULTANEOUS DETERMINATION OF HEMES-A, HEMES-B, AND HEMES-C FROM PYRIDINE HEMOCHROME SPECTRA [J].
BERRY, EA ;
TRUMPOWER, BL .
ANALYTICAL BIOCHEMISTRY, 1987, 161 (01) :1-15
[5]  
Blumberg WE, 1971, PROBES STRUCTURE FUN, P215
[6]   Ionization-reactivity relationships for cysteine thiols in polypeptides [J].
Bulaj, G ;
Kortemme, T ;
Goldenberg, DP .
BIOCHEMISTRY, 1998, 37 (25) :8965-8972
[7]   Heme-regulated eIF-2α kinase purifies as a hemoprotein [J].
Chefalo, PJ ;
Oh, JH ;
Rafie-Kolpin, M ;
Kan, B ;
Chen, JJ .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (02) :820-830
[8]  
Claiborne A, 2001, ADV PROTEIN CHEM, V58, P215
[10]   NPAS2: A gas-responsive transcription factor [J].
Dioum, EM ;
Rutter, J ;
Tuckerman, JR ;
Gonzalez, G ;
Gilles-Gonzalez, MA ;
McKnight, SL .
SCIENCE, 2002, 298 (5602) :2385-2387