Unraveling monogenic channelopathies and their implications for complex polygenic disease

被引:40
作者
Gargus, JJ
机构
[1] Univ Calif Irvine, Dept Phys & Biophys, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Pediat, Div Human Genet, Irvine, CA 92717 USA
关键词
D O I
10.1086/374317
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ion channels are a large family of >1400 related proteins representing >1% of our genetic endowment; however, ion-channel diseases reflect a relatively new category of inborn error. They were first recognized in 1989, with the discovery of cystic fibrosis transmembrane conductance regulator, and rapidly advanced as positional and functional studies converged in the dissection of components of the action potential of excitable tissues. Although it remains true that diseases of excitable tissue still most clearly illustrate this family of disease, ion-channel disorders now cover the gamut of medical disciplines, causing significant pathology in virtually every organ system, producing a surprising range of often unanticipated symptoms, and providing valuable targets for pharmacological intervention. Many of the features shared among the monogenic ion-channel diseases provide a general framework for formulating a foundation for considering their intrinsically promising role in polygenic disease. Since an increasingly important approach to the identification of genes underlying polygenic disease is to identify "functional candidates" within a critical region and to test their disease association, it becomes increasingly important to appreciate how these ion-channel mechanisms can be implicated in pathophysiology.
引用
收藏
页码:785 / 803
页数:19
相关论文
共 117 条
[1]   MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia [J].
Abbott, GW ;
Sesti, F ;
Splawski, I ;
Buck, ME ;
Lehmann, WH ;
Timothy, KW ;
Keating, MT ;
Goldstein, SAN .
CELL, 1999, 97 (02) :175-187
[2]   MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis [J].
Abbott, GW ;
Butler, MH ;
Bendahhou, S ;
Dalakas, MC ;
Ptacek, LJ ;
Goldstein, SAN .
CELL, 2001, 104 (02) :217-231
[3]   Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells [J].
Barclay, J ;
Balaguero, N ;
Mione, M ;
Ackerman, SL ;
Letts, VA ;
Brodbeck, J ;
Canti, C ;
Meir, A ;
Page, KM ;
Kusumi, K ;
Perez-Reyes, E ;
Lander, ES ;
Frankel, WN ;
Gardiner, RM ;
Dolphin, AC ;
Rees, M .
JOURNAL OF NEUROSCIENCE, 2001, 21 (16) :6095-6104
[4]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[5]   First genetic evidence of GABAA receptor dysfunction in epilepsy:: a mutation in the γ2-subunit gene [J].
Baulac, S ;
Huberfeld, G ;
Gourfinkel-An, I ;
Mitropoulou, G ;
Beranger, A ;
Prud'homme, JF ;
Baulac, M ;
Brice, A ;
Bruzzone, R ;
LeGuern, E .
NATURE GENETICS, 2001, 28 (01) :46-48
[6]   MOLECULAR MECHANISM FOR AN INHERITED CARDIAC-ARRHYTHMIA [J].
BENNETT, PB ;
YAZAWA, K ;
MAKITA, N ;
GEORGE, AL .
NATURE, 1995, 376 (6542) :683-685
[7]   EPISODIC ATAXIA MYOKYMIA SYNDROME IS ASSOCIATED WITH POINT MUTATIONS IN THE HUMAN POTASSIUM CHANNEL GENE, KCNA1 [J].
BROWNE, DL ;
GANCHER, ST ;
NUTT, JG ;
BRUNT, ERP ;
SMITH, EA ;
KRAMER, P ;
LITT, M .
NATURE GENETICS, 1994, 8 (02) :136-140
[8]   A novel sodium channel mutation in a family with hypokalemic periodic paralysis [J].
Bulman, DE ;
Scoggan, KA ;
van Oene, MD ;
Nicolle, MW ;
Hahn, AF ;
Tollar, LL ;
Ebers, GC .
NEUROLOGY, 1999, 53 (09) :1932-1936
[9]   Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse [J].
Burgess, DL ;
Jones, JM ;
Meisler, MH ;
Noebels, JL .
CELL, 1997, 88 (03) :385-392
[10]   Excitatory but not inhibitory synaptic transmission is reduced in lethargic(Cacnb41h) and tottering (Cacnalatg) mouse thalami [J].
Caddick, SJ ;
Wang, CS ;
Fletcher, CF ;
Jenkins, NA ;
Copeland, NG ;
Hosford, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (05) :2066-2074