Temporal-callosal pathway diffusivity predicts phonological skills in children

被引:189
作者
Dougherty, Robert F. [1 ]
Ben-Shachar, Michal
Deutsch, Gayle K.
Hernandez, Arvel
Fox, Glenn R.
Wandell, Brian A.
机构
[1] Stanford Univ, Stanford Inst Reading & Learning, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
关键词
corpus callosum; diffusion tensor imaging; magnetic resonance imaging; reading;
D O I
10.1073/pnas.0608961104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of skilled reading requires efficient communication between distributed brain regions. By using diffusion tensor imaging, we assessed the interhemispheric connections in a group of children with a wide range of reading abilities. We segmented the callosal fibers into regions based on their likely cortical projection zones, and we measured diffusion properties in these segmented regions. Phonological awareness (a key factor in reading acquisition) was positively correlated with diffusivity perpendicular to the main axis of the callosal fibers that connect the temporal lobes. These results could be explained by several physiological properties. For example, good readers may have fewer but larger axons connecting left and right temporal lobes, or their axon membranes in these regions may be more permeable than the membranes of poor readers. These measurements are consistent with previous work suggesting that good readers have reduced interhemispheric connectivity and are better at processing rapidly changing visual and auditory stimuli.
引用
收藏
页码:8556 / 8561
页数:6
相关论文
共 53 条
[1]   Spatial transformations of diffusion tensor magnetic resonance images [J].
Alexander, DC ;
Pierpaoli, C ;
Basser, PJ ;
Gee, JC .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (11) :1131-1139
[2]  
BAMMER R, 2001, P 9 ANN M ISMRM GLAS, V9, P508
[3]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[4]  
2-O
[5]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[6]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[7]   Imaging brain connectivity in children with diverse reading ability [J].
Beaulieu, C ;
Plewes, C ;
Paulson, LA ;
Roy, D ;
Snook, L ;
Concha, L ;
Phillips, L .
NEUROIMAGE, 2005, 25 (04) :1266-1271
[8]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[9]   Tracking neuronal fiber pathways in the living human brain [J].
Conturo, TE ;
Lori, NF ;
Cull, TS ;
Akbudak, E ;
Snyder, AZ ;
Shimony, JS ;
McKinstry, RC ;
Burton, H ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10422-10427
[10]   TOPOGRAPHY OF THE HUMAN CORPUS-CALLOSUM [J].
DELACOSTE, MC ;
KIRKPATRICK, JB ;
ROSS, ED .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1985, 44 (06) :578-591