Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer

被引:170
作者
Ali, M. [1 ]
El-Hameed, M. A. [2 ]
Farahat, M. A. [2 ]
机构
[1] Oriental Weavers Grp, Cairo, Egypt
[2] Zagazig Univ, Fac Engn, Elect Power & Machines Dept, Zagazig 44519, Egypt
关键词
PEMFC modeling; Parameters' identification; Grey wolf optimizer; Parametric and non-parametric statistical tests; RNA GENETIC ALGORITHM; STRATEGY; DISPATCH;
D O I
10.1016/j.renene.2017.04.036
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aim of this paper is to develop an accurate model for the polymer electrolyte membrane fuel cell (PEMFC), that can precisely mimic and simulate the electrical characteristics of actual PEMFC stacks at different operating conditions. Models of PEMFC are empirical, multi-variables and have many nonlinear terms that should be estimated accurately to ensure appropriate modeling. In this paper, a novel application based-on a nature-inspired metaheuristic optimization algorithm namely, the grey wolf optimizer (GWO) to identify PEMFC model parameters is addressed. The GWO relies on the principles of metaheuristic techniques, exploration and exploitation phases, in order to avoid sticking in local optima and getting better solution. The proposed GWO-based method is tested on five commercial PEMFCs. Many investigations and performance tests are made to prove the effectiveness of the algorithm to simulate the electrical behavior of those commercial PEMFC stacks based-on experimental data. In addition, parametric and non-parametric statistical tests are in place to assess the effectiveness of the proposed method. For more validation, PEMFC model based-on GWO is compared with other challenging algorithms published in literature, and very competitive results are reported. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 39 条
[1]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[2]   Parameter estimation of fuel cell polarization curve using BMO algorithm [J].
Askarzadeh, Alireza .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (35) :15405-15413
[3]   A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (10) :1196-1204
[4]   Optimization of PEMFC model parameters with a modified particle swarm optimization [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1258-1265
[5]   PEM fuel cell modeling using differential evolution [J].
Chakraborty, Uday K. ;
Abbott, Travis E. ;
Das, Sajal K. .
ENERGY, 2012, 40 (01) :387-399
[6]   Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells [J].
Corrêa, JM ;
Farret, FA ;
Popov, VA ;
Simoes, MG .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2005, 20 (01) :211-218
[7]   An electrochemical-based fuel-cell model suitable for electrical engineering automation approach [J].
Corrêa, JM ;
Farret, FA ;
Canha, LN ;
Simoes, MG .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (05) :1103-1112
[8]   Parameter extraction of different fuel cell models with transferred adaptive differential evolution [J].
Gong, Wenyin ;
Yan, Xuesong ;
Liu, Xiaobo ;
Cai, Zhihua .
ENERGY, 2015, 86 :139-151
[9]   A selective hybrid stochastic strategy for fuel-cell multi-parameter identification [J].
Guarnieri, Massimo ;
Negro, Enrico ;
Di Noto, Vito ;
Alotto, Piergiorgio .
JOURNAL OF POWER SOURCES, 2016, 332 :249-264
[10]   Economic dispatch using hybrid grey wolf optimizer [J].
Jayabarathi, T. ;
Raghunathan, T. ;
Adarsh, B. R. ;
Suganthan, Ponnuthurai Nagaratnam .
ENERGY, 2016, 111 :630-641