Employing new cellular therapeutic targets for Alzheimer's disease: A change for the better?

被引:43
作者
Chong, ZZ
Li, FQ
Maiese, K
机构
[1] Wayne State Univ, Sch Med, Dept Neurol, Detroit, MI 48201 USA
[2] Wayne State Univ, Sch Med, Div Cellular & Mol Cerebral Ischemia, Detroit, MI 48201 USA
[3] Wayne State Univ, Sch Med, Dept Anat & Cell Biol, Detroit, MI 48201 USA
[4] Wayne State Univ, Sch Med, Ctr Mol Med & Genet, Detroit, MI 48201 USA
[5] Wayne State Univ, Sch Med, Inst Environm Hlth Sci, Detroit, MI 48201 USA
关键词
beta-amyloid; Akt; caspases; erythropoietin; Forkhead transcription factors; metabotropic; microglia; nicotinamide; Wnt;
D O I
10.2174/1567202052773508
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Alzheimer's disease is a progressive disorder that results in the loss of cognitive function and memory. Although traditionally defined by the presence of extracellular plaques of amyloid-beta peptide aggregates and intracellular neurofibrillary tangles in the brain, more recent work has begun to focus on elucidating the complexities of Alzheimer's disease that involve the generation of reactive oxygen species and oxidative stress. Apoptotic processes that are incurred as a function of oxidative stress affect neuronal, vascular, and monocyte derived cell populations. In particular, it is the early apoptotic induction of cellular membrane asymmetry loss that drives inflammatory microglial activation and subsequent neuronal and vascular injury. In this article, we discuss the role of novel cellular pathways that are invoked during oxidative stress and may potentially mediate apoptotic injury in Alzheimer's disease. Ultimately, targeting new avenues for the development of therapeutic strategies linked to mechanisms that involve inflammatory microglial activation, cellular metabolism, cell-cycle regulation, G-protein regulated receptors, and cytokine modulation may provide fruitful gains for both the prevention and treatment of Alzheimer's disease.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 233 条
[1]   Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2 [J].
Adamec, E ;
Mohan, P ;
Vonsattel, JP ;
Nixon, RA .
ACTA NEUROPATHOLOGICA, 2002, 104 (01) :92-104
[2]   Reactive carbonyl formation by oxidative and non-oxidative pathways [J].
Adams, S ;
Green, P ;
Claxton, R ;
Simcox, S ;
Williams, MV ;
Walsh, K ;
Leeuwenburgh, C .
FRONTIERS IN BIOSCIENCE, 2001, 6 :A17-A24
[3]   Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression - A randomized controlled trial [J].
Aisen, PS ;
Schafer, KA ;
Grundman, M ;
Pfeiffer, E ;
Sano, M ;
Davis, KL ;
Farlow, MR ;
Jin, S ;
Thomas, RG ;
Thal, LJ .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 289 (21) :2819-2826
[4]  
ALTOMARE DA, 1995, ONCOGENE, V11, P1055
[5]   A cdk5-p35 stable complex is involved in the β-amyloid-induced deregulation of cdk5 activity in hippocampal neurons [J].
Alvarez, A ;
Muñoz, JP ;
Maccioni, RB .
EXPERIMENTAL CELL RESEARCH, 2001, 264 (02) :266-274
[6]   Lithium protects cultured neurons against β-amyloid-induced neurodegeneration [J].
Alvarez, G ;
Muñoz-Montaño, JR ;
Satrústegui, J ;
Avila, J ;
Bogónez, E ;
Díaz-Nido, J .
FEBS LETTERS, 1999, 453 (03) :260-264
[7]   Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Sinclair, DA .
NATURE, 2003, 423 (6936) :181-185
[8]   Presenilin-1 is located in rat mitochondria [J].
Ankarcrona, M ;
Hultenby, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 295 (03) :766-770
[9]   Endothelial apoptosis induced by oxidative stress through activation of NF-κB -: Antiapoptotic effect of antioxidant agents on endothelial cells [J].
Aoki, M ;
Nata, T ;
Morishita, R ;
Matsushita, H ;
Nakagami, H ;
Yamamoto, K ;
Yamazaki, K ;
Nakabayashi, M ;
Ogihara, T ;
Kaneda, Y .
HYPERTENSION, 2001, 38 (01) :48-55
[10]   Effect of increased glycogen synthase kinase-3 activity upon the maturation of the amyloid precursor protein in transfected cells [J].
Aplin, AE ;
Jacobsen, JS ;
Anderton, BH ;
Gallo, JM .
NEUROREPORT, 1997, 8 (03) :639-643