Characterization of the adhesion of single-walled carbon nanotubes in poly (p-phenylene terephthalamide) composite fibres

被引:32
作者
Deng, Libo [1 ]
Young, Robert J. [1 ]
van der Zwaag, Sybrand [2 ]
Picken, Steven [3 ]
机构
[1] Univ Manchester, Sch Mat, Ctr Mat Sci, Manchester M1 7HS, Lancs, England
[2] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
[3] Delft Univ Technol, Dept Chem Technol, NL-2628 BS Delft, Netherlands
关键词
Aramids; Carbon nanotubes; Raman spectroscopy; POLARIZED RAMAN-SPECTROSCOPY; MECHANICAL-PROPERTIES; MOLECULAR-ORIENTATION; STRENGTH; DEFORMATION; MODULUS; TOUGHNESS;
D O I
10.1016/j.polymer.2010.02.040
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(p-phenylene terephthalamide)/single-walled carbon (PPTA/SWNT) composite fibres with different draw ratios have been spun using a dry-jet wet spinning process and their structure and deformation behaviour analysed using Raman spectroscopy. The dispersion of nanotube has been examined by Raman scattering intensity mapping along the fibre. The nanotubes improved the polymer orientation in composite fibre with a draw ratio of 2 but degraded the orientation at higher draw ratios. The mechanical reinforcing effect by nanotubes is related to the change of polymer orientation, suggesting a dominant role of polymer orientation in mechanical performance of the composite fibre. High efficiency of stress transfer within the strain range of 0-0.35% and breakdown of the interface at higher strains has been found in the composite fibres through an in situ Raman spectroscopic study during fibre deformation. Cyclic loading applied on the fibre has indicated reversible deformation behaviour at low strain and gradual damage of the interface at high strains. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2033 / 2039
页数:7
相关论文
共 35 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J].
Bhattacharyya, AR ;
Sreekumar, TV ;
Liu, T ;
Kumar, S ;
Ericson, LM ;
Hauge, RH ;
Smalley, RE .
POLYMER, 2003, 44 (08) :2373-2377
[4]   Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes [J].
Blond, David ;
Barron, Valerie ;
Ruether, Manuel ;
Ryan, Kevin P. ;
Nicolosi, Valeria ;
Blau, Werner J. ;
Coleman, Jonathan N. .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (12) :1608-1614
[5]   INVESTIGATION OF MOLECULAR ORIENTATION DISTRIBUTIONS BY POLARIZED RAMAN-SCATTERING AND POLARIZED FLUORESCENCE [J].
BOWER, DI .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1972, 10 (11) :2135-2153
[6]   Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite [J].
Chang, T. -E. ;
Kisliuk, A. ;
Rhodes, S. M. ;
Brittain, W. J. ;
Sokolov, A. P. .
POLYMER, 2006, 47 (22) :7740-7746
[7]   High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J].
Coleman, JN ;
Cadek, M ;
Blake, R ;
Nicolosi, V ;
Ryan, KP ;
Belton, C ;
Fonseca, A ;
Nagy, JB ;
Gun'ko, YK ;
Blau, WJ .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (08) :791-798
[8]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706
[9]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[10]   Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J].
Cooper, CA ;
Young, RJ ;
Halsall, M .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (3-4) :401-411