Effect of dietary protein and lipid level on metabolic utilization of diets by european sea bass (Dicentrarchus labrax) juveniles

被引:59
作者
Peres, H
Oliva-Teles, A
机构
[1] Univ Porto, Fac Ciencias, Dept Zool & Antropol, P-4099002 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, CIIMAR, P-4099002 Oporto, Portugal
关键词
ammonia excretion; dietary lipids; dietary protein; metabolism; oxygen consumption; temperature;
D O I
10.1023/A:1023239819048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two trials were performed with sea bass juveniles to study the effect of dietary protein (trial I) and lipid (trial II) levels on the metabolic utilization of diets at 25degreesC. The effect of water temperature (18 and 25degreesC) on metabolism was also tested in trial I. For that purpose, oxygen consumption and ammonia excretion were measured both in fed and in 9-days starved fish. In trial I, diets were formulated to be isoenergetic (GE: 19.4 kJ g(-1)) and to have 36, 42, 48 and 56% protein; in trial II, diets were formulated to be isonitrogenous (48% protein) and to have 12, 18, 24 and 30% lipid. In trial I, feed intake (g kg(-1) day(-1)), and daily ammonia excretion and oxygen consumption significantly increased with water temperature. However, when expressed relatively to intake there was no significant effect of temperature on ammonia excretion (% N intake) or heat production (% GE intake). Heat increment of feeding (% GE intake) was neither affected by diet composition nor by water temperature. The relative contribution of protein catabolism to total energy expenditure significantly increased with dietary protein level, but was not affected by water temperature. In trial II, both daily ammonia excretion and oxygen consumption were inversely correlated to dietary lipid levels. Nitrogen excretion, heat production, heat increment of feeding, non-fecal losses (% intake) and the relative contribution of protein to total energy expenditure were also inversely related to dietary lipid levels. Results of this study indicate that the main effect of water temperature was to modify feed intake, not the metabolic utilization of diets. Indeed, expressed relatively to nitrogen or energy intakes, both nitrogen and energy budgets were not significantly affected by water temperature. A decrease of dietary protein to energy ratio, by modifying either dietary protein or lipid levels, spared protein utilization for metabolism, and this effect was essentially due to a decrease of non-fecal nitrogen excretion and of the heat increment of feeding.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 29 条
  • [1] INFLUENCE OF TEMPERATURE AND SALINITY ON GROWTH AND BODY-COMPOSITION OF SEA BASS FINGERLINGS, DICENTRARCHUS-LABRAX
    ALLIOT, E
    PASTOUREAUD, A
    THEBAULT, H
    [J]. AQUACULTURE, 1983, 31 (2-4) : 181 - 194
  • [2] BRAUGE C, 1994, THESIS BORDEAUX U FR
  • [3] Cho C Y, 1990, World Rev Nutr Diet, V61, P132
  • [4] BIOENERGETICS OF SALMONID FISHES - ENERGY-INTAKE, EXPENDITURE AND PRODUCTIVITY
    CHO, CY
    SLINGER, SJ
    BAYLEY, HS
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1982, 73 (01): : 25 - 41
  • [5] Development of bioenergetic models and the Fish-PrFEQ software to estimate production, feeding ration and waste output in aquaculture
    Cho, CY
    Bureau, DP
    [J]. AQUATIC LIVING RESOURCES, 1998, 11 (04) : 199 - 210
  • [6] Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax)
    Dias, J
    Alvarez, MJ
    Diez, A
    Arzel, J
    Corraze, G
    Bautista, JM
    Kaushik, SJ
    [J]. AQUACULTURE, 1998, 161 (1-4) : 169 - 186
  • [7] Comparison of nitrogenous losses in five teleost fish species
    Dosdat, A
    Servais, F
    Metailler, R
    Huelvan, C
    Desbruyeres, E
    [J]. AQUACULTURE, 1996, 141 (1-2) : 107 - 127
  • [8] ELLIOTT JM, 1975, OECOLOGIA, V19, P383
  • [9] Gnaiger E., 1983, POLARGRAPHIC OXYGEN, P337
  • [10] GUERINANCEY O, 1976, AQUACULTURE, V9, P71, DOI 10.1016/0044-8486(76)90049-1