Geotechnical engineering reliability: How well do we know what we are doing?

被引:178
作者
Christian, JT
机构
[1] Waban, MA 02468
关键词
D O I
10.1061/(ASCE)1090-0241(2004)130:10(985)
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Uncertainty and risk are central features of geotechnical and geological engineering. Engineers can deal with uncertainty by ignoring it, by being conservative, by using the observational method, or by quantifying it. In recent years, reliability analysis and probabilistic methods have found wide application in geotechnical engineering and related fields. The tools are well known, including methods of reliability analysis and decision trees. Analytical models for deterministic geotechnical applications are also widely available, even if their underlying reliability is sometimes suspect. The major issues involve input and output. In order to develop appropriate input, the engineer must understand the nature of uncertainty and probability. Most geotechnical uncertainty reflects lack of knowledge, and probability based on the engineer's degree of belief comes closest to the profession's practical approach. Bayesian approaches are especially powerful because they provide probabilities on the state of nature rather than on the observations. The first point in developing a model from geotechnical data is that the distinction between the trend or systematic error and the spatial error is a modeling choice, not a property of nature. Second, properties estimated from small samples may be seriously in error, whether they are used probabilistically or deterministically. Third, experts generally estimate mean trends well but tend to underestimate uncertainty and to be overconfident in their estimates. In this context, engineering judgment should be based on a demonstrable chain of reasoning and not on speculation. One difficulty in interpreting results is that most people, including engineers, have difficulty establishing an allowable probability of failure or dealing with low values of probability. The F-N plot is one useful vehicle for comparing calculated probabilities with observed frequencies of failure of comparable facilities. In any comparison it must be noted that a calculated probability is a lower bound because it must fail to incorporate the factors that are ignored in the analysis. It is useful to compare probabilities of failure for alternative designs, and the reliability methods reveal the contributions of different components to the uncertainty in the probability of failure. Probability is not a property of the world but a state of mind; geotechnical uncertainty is primarily epistemic, Bayesian, and belief based. The current challenges to the profession are to make use of probabilistic methods in practice and to sharpen our investigations and analyses so that each additional data point provides maximal information.
引用
收藏
页码:985 / 1003
页数:19
相关论文
共 71 条
[1]  
Aitchison J., 1969, The lognormal distribution With special reference to its uses in economics
[2]  
*ANCOLD, 1994, GUID RISK ASS 1994
[3]  
[Anonymous], P ENG MECH DIV SPEC
[4]  
[Anonymous], J GEOTECH ENG DIV
[5]  
[Anonymous], 1989, EMPIRE CHSNCE PROBAB
[6]  
[Anonymous], 2008, LIF EXT NUCL POW PLA
[7]  
Baecher G.B., 2003, Reliability and statistics in geotechnical engineering
[8]   Discussion of "evaluating site investigation quality using GIS and geostatistics" by R. L. Parsons and J. D. Frost [J].
Baecher, GB ;
Christian, JT .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2003, 129 (09) :867-867
[9]  
BAECHER GB, 1982, UPDATING SUBSURFACE, P463
[10]   Reliability characteristics of a platform in the Mississippi River Delta [J].
Bea, RG .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 1998, 124 (08) :729-738