Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings

被引:176
作者
Jiang, M
Zhang, J [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Kowloon Tong, Hong Kong, Peoples R China
[2] Nanjing Agr Univ, Coll Life Sci, Nanjing, Peoples R China
关键词
abscisic acid; antioxidant enzymes; cytosolic calcium; NADPH oxidase; plasma membrane; reactive oxygen species; signal transduction;
D O I
10.1046/j.1365-3040.2003.01025.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The signal interactions between calcium (Ca2+) and reactive oxygen species (ROS) originated from plasma membrane NADPH oxidase in abscisic acid (ABA)-induced antioxidant defence were investigated in leaves of maize (Zea mays L.) seedlings. Treatment with ABA led to significant increases in the activity of plasma membrane NADPH oxidase, the production of leaf O-2(-), and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). However, such increases were blocked by the pretreatment with Ca2+ chelator EGTA or Ca2+ channel blockers La3+ and verapamil, and NADPH oxidase inhibitors such as diphenylene iodonium (DPI), imidazole and pyridine. Treatment with Ca2+ also significantly induced the increases in NADPH oxidase activity, O-2(-) production and the activities of antioxidant enzymes, and the increases were arrested by pretreatment with the NADPH oxidase inhibitors. Treatment with oxidative stress induced by paraquat, which generates O-2(-), led to the induction of antioxidant defence enzymes, and the up-regulation was suppressed by the pretreatment of Ca2+ chelator and Ca2+ channel blockers. Our data suggest that a cross-talk between Ca2+ and ROS originated from plasma membrane-bound NADPH oxidase is involved in the ABA signal transduction pathway leading to the induction of antioxidant enzyme activity, and Ca2+ functions upstream as well as downstream of ROS production in the signal transduction event in plants.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 51 条
[1]   Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae [J].
Able, AJ ;
Guest, DI ;
Sutherland, MW .
PLANT PHYSIOLOGY, 1998, 117 (02) :491-499
[2]   Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant [J].
Allen, GJ ;
Chu, SP ;
Schumacher, K ;
Shimazaki, CT ;
Vafeados, D ;
Kemper, A ;
Hawke, SD ;
Tallman, G ;
Tsien, RY ;
Harper, JF ;
Chory, J ;
Schroeder, JI .
SCIENCE, 2000, 289 (5488) :2338-2342
[3]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[4]  
[Anonymous], 1984, METHOD ENZYMOL
[5]   PLASMA-MEMBRANE REDOX ENZYME IS INVOLVED IN THE SYNTHESIS OF O2- AND H2O2 BY PHYTOPHTHORA ELICITOR-STIMULATED ROSE CELLS [J].
AUH, CK ;
MURPHY, TM .
PLANT PHYSIOLOGY, 1995, 107 (04) :1241-1247
[6]   Involvement of abscisic acid-dependent and - Independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue [J].
Bellaire, BA ;
Carmody, J ;
Braud, J ;
Gossett, DR ;
Banks, SW ;
Lucas, MC ;
Fowler, TE .
FREE RADICAL RESEARCH, 2000, 33 (05) :531-545
[7]   Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley [J].
Blume, B ;
Nürnberger, T ;
Nass, N ;
Scheel, D .
PLANT CELL, 2000, 12 (08) :1425-1440
[8]   The role of calcium and activated oxygens as signals for controlling cross-tolerance [J].
Bowler, C ;
Fluhr, R .
TRENDS IN PLANT SCIENCE, 2000, 5 (06) :241-246
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]  
BRISKIN DP, 1987, METHOD ENZYMOL, V148, P542