Quantum walk algorithm for element distinctness

被引:133
作者
Ambainis, A [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
来源
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2004年
关键词
D O I
10.1109/FOCS.2004.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use quantum walks to construct a new quantum algorithm for element distinctness and its generalization. For element distinctness (the problem of finding two equal items among N given items), we get an O(N-2.3) query quantum algorithm. This improves the previous O(N-3/4) quantum algorithm of Buhrman et al. [10] and matches the lower bound by Shi [28]. We also give an O(N (k/(k+1))) query quantum algorithm for the generalization of element distinctness in which we have to find k equal items among N items.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 30 条
[1]  
AARONSON S, P STOC 02, P635
[2]  
AARONSON S, P FOCS 03, P200
[3]  
AHARONOV D, 1998, ANN REV COMPUTATIONA, V6
[4]  
AMBAINIS A, QUANTPH0402107
[5]  
AMBAINIS A, IN PRESS P FOTFS 3
[6]  
AMBAINIS A, QUANTPH0305179
[7]   QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS [J].
Ambainis, Andris .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :507-518
[8]   Time-space trade-off lower bounds for randomized computation of decision problems [J].
Beame, P ;
Saks, M ;
Sun, XD ;
Vee, E .
JOURNAL OF THE ACM, 2003, 50 (02) :154-195
[9]  
BENIOFF P, 2002, AMS CONTEMPORARY MAT
[10]  
Brassard G., 1998, LATIN '98: Theoretical Informatics. Third Latin American Symposium. Proceedings, P163, DOI 10.1007/BFb0054319