'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress

被引:140
作者
Johnson-Cadwell, L. I. [1 ]
Jekabsons, M. B. [1 ]
Wang, A. [1 ]
Polster, B. M. [1 ]
Nicholls, D. G. [1 ]
机构
[1] Buck Inst Age Res, Novato, CA 94945 USA
关键词
calcium; glutamate; mitochondria; mitochondrial; membrane potential; oxidative stress; superoxide;
D O I
10.1111/j.1471-4159.2007.04516.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cultured rat cerebellar granule neurons were incubated with low nanomolar concentrations of the protonophore carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) to test the hypothesis that 'mild uncoupling' could be neuroprotective by decreasing oxidative stress. To quantify the uncoupling, respiration and mitochondrial membrane potential (Delta psi(m)) were determined in parallel as a function of FCCP concentration. Delta psi(m) dropped by less than 10 mV before respiratory control was lost. Conditions for the valid estimation of matrix superoxide levels were determined from the rate of oxidation of the matrix-targeted fluorescent probe MitoSOX. No significant change in the level of matrix superoxide could be detected on addition of FCCP while respiratory control was retained, although cytoplasmic superoxide levels measured by dihydroethidium oxidation increased. 'Mild uncoupling' by 30 nmol/L FCCP did not alleviate neuronal dysregulation induced by glutathione depletion and significantly enhanced that due to menadione-induced oxidative stress. Low protonophore concentrations enhanced N-methyl-D-aspartate receptor-induced delayed calcium deregulation consistent with a decrease in the spare respiratory capacity available to match the bioenergetic demand of chronic receptor activation. It is concluded that the 'mild uncoupling' hypothesis is not supported by this model.
引用
收藏
页码:1619 / 1631
页数:13
相关论文
共 53 条
[1]   β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2004, 24 (02) :565-575
[2]   Mitochondrial uncoupling proteins in the CNS: In support of function and survival [J].
Andrews, ZB ;
Diano, S ;
Horvath, TL .
NATURE REVIEWS NEUROSCIENCE, 2005, 6 (11) :829-840
[3]   Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease [J].
Andrews, ZB ;
Horvath, B ;
Barnstable, CJ ;
Elseworth, J ;
Yang, LC ;
Beal, MF ;
Roth, RH ;
Matthews, RT ;
Horvath, TL .
JOURNAL OF NEUROSCIENCE, 2005, 25 (01) :184-191
[4]   AGING, ENERGY, AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISEASES [J].
BEAL, MF .
ANNALS OF NEUROLOGY, 1995, 38 (03) :357-366
[5]   Mitochondria, free radicals, and neurodegeneration [J].
Beal, MF .
CURRENT OPINION IN NEUROBIOLOGY, 1996, 6 (05) :661-666
[6]  
BERNARDI P, 1992, J BIOL CHEM, V267, P2934
[7]   The efficiency and plasticity of mitochondrial energy transduction [J].
Brand, MD .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :897-904
[8]   Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins [J].
Brand, MD ;
Affourtit, C ;
Esteves, TC ;
Green, K ;
Lambert, AJ ;
Miwa, S ;
Pakay, JL ;
Parker, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (06) :755-767
[9]  
Budd SL, 1996, J NEUROCHEM, V67, P2282
[10]  
Castilho RF, 1998, J NEUROSCI, V18, P10277