Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis

被引:506
作者
Stone, SL
Hauksdóttir, H
Troy, A
Herschleb, J
Kraft, E
Callis, J [1 ]
机构
[1] Univ Calif Davis, Sect Mol & Cellular Biol, Div Biol Sci, Livermore, CA 95616 USA
[2] Univ Calif Davis, Plant Biol Grad Grp Program, Livermore, CA 95616 USA
关键词
D O I
10.1104/pp.104.052423
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Approximately 5% of the Arabidopsis (Arabidopsis thaliana) proteome is predicted to be involved in the ubiquitination/26S proteasome pathway. The majority of these predicted proteins have identity to conserved domains found in E3 ligases, of which there are multiple types. The RING-type E3 is characterized by the presence of a cysteine-rich domain that coordinates two zinc atoms. Database searches followed by extensive manual curation identified 469 predicted Arabidopsis RING domain-containing proteins. In addition to the two canonical RING types (CH2C3 or C3HC4), additional types of modified RING domains, named RING-v, RING-D, RING-S/T, RING-G, and RING-C2, were identified. The modified RINGs differ in either the spacing between metal ligands or have substitutions at one or more of the metal ligand positions. The majority of the canonical and modified RING domain-containing proteins analyzed were active in in vitro ubiquitination assays, catalyzing polyubiquitination with the E2 AtUBCS. To help identity regions of the proteins that may interact with substrates, domain analyses of the amino acids outside the RING domain classified RING proteins into 30 different groups. Several characterized protein-protein interaction domains were identified, as well as additional conserved domains not described previously. The two largest classes of RING proteins contain either no identifiable domain or a transmembrane domain. The presence of such a large and diverse number of RING domain-containing proteins that function as ubiquitin E3 ligases suggests that target-specific proteolysis by these E3 ligases is a complex and important part of cellular regulation in Arabidopsis.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 86 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]   Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex [J].
Albert, TK ;
Hanzawa, H ;
Legtenberg, YIA ;
de Ruwe, MJ ;
van den Heuvel, FAJ ;
Collart, MA ;
Boelens, R ;
Timmers, HTM .
EMBO JOURNAL, 2002, 21 (03) :355-364
[3]   GRAIL:: An E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells [J].
Anandasabapathy, N ;
Ford, GS ;
Bloom, D ;
Holness, C ;
Paragas, V ;
Seroogy, C ;
Skrenta, H ;
Hollenhorst, M ;
Fathman, CG ;
Soares, L .
IMMUNITY, 2003, 18 (04) :535-547
[4]   Structure and biochemical function of a prototypical Arabidopsis U-box domain [J].
Andersen, P ;
Kragelund, BM ;
Olsen, AN ;
Larsen, FH ;
Chua, NH ;
Poulsen, FM ;
Skriver, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (38) :40053-40061
[5]   Features of the Parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, UbcH7 [J].
Ardley, HC ;
Tan, NGS ;
Rose, SA ;
Markham, AF ;
Robinson, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) :19640-19647
[6]   Ubiquitylation in plants: a post-genomic look at a post-translational modification [J].
Bachmair, A ;
Novatchkova, M ;
Potuschak, T ;
Eisenhaber, F .
TRENDS IN PLANT SCIENCE, 2001, 6 (10) :463-470
[7]   STRUCTURE OF THE C3HC4 DOMAIN BY H-1-NUCLEAR MAGNETIC-RESONANCE SPECTROSCOPY - A NEW STRUCTURAL CLASS OF ZINC-FINGER [J].
BARLOW, PN ;
LUISI, B ;
MILNER, A ;
ELLIOTT, M ;
EVERETT, R .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 237 (02) :201-211
[8]   ANALYSIS OF THE RNA-RECOGNITION MOTIF AND RS AND RGG DOMAINS - CONSERVATION IN METAZOAN PRE-MESSENGER-RNA SPLICING FACTORS [J].
BIRNEY, E ;
KUMAR, S ;
KRAINER, AR .
NUCLEIC ACIDS RESEARCH, 1993, 21 (25) :5803-5816
[9]   Kinesin: What gives? [J].
Block, SM .
CELL, 1998, 93 (01) :5-8
[10]   On the gap in the spectrum of the translations [J].
Borchers, HJ .
ANNALES HENRI POINCARE, 2002, 3 (01) :1-17