Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus

被引:257
作者
Rex, Christopher S.
Lin, Ching-Yi
Kramar, Eniko A.
Chen, Lulu Y.
Gall, Christine M. [1 ]
Lynch, Gary
机构
[1] Univ Calif Irvine, Gillespie Neurosci Res Facil, Dept Neurobiol & Behav, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92697 USA
关键词
consolidation; synaptic plasticity; actin; phalloidin; cofilin; PAK;
D O I
10.1523/JNEUROSCI.4037-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain-derived neurotrophic factor (BDNF) is an extremely potent, positive modulator of theta burst induced long-term potentiation (LTP) in the adult hippocampus. The present studies tested whether the neurotrophin exerts its effects by facilitating cytoskeletal changes in dendritic spines. BDNF caused no changes in phalloidin labeling of filamentous actin (F-actin) when applied alone to rat hippocampal slices but markedly enhanced the number of densely labeled spines produced by a threshold level of theta burst stimulation. Conversely, the BDNF scavenger TrkB-Fc completely blocked increases in spine F-actin produced by suprathreshold levels of theta stimulation. TrkB-Fc also blocked LTP consolidation when applied 1 - 2 min, but not 10 min, after theta trains. Additional experiments confirmed that p21 activated kinase and cofilin, two actin-regulatory proteins implicated in spine morphogenesis, are concentrated in spines in mature hippocampus and further showed that both undergo rapid, dose-dependent phosphorylation after infusion of BDNF. These results demonstrate that the influence of BDNF on the actin cytoskeleton is retained into adulthood in which it serves to positively modulate the time-dependent LTP consolidation process.
引用
收藏
页码:3017 / 3029
页数:13
相关论文
共 78 条
[1]   Activity-induced targeting of profilin and stabilization of dendritic spine morphology [J].
Ackermann, M ;
Matus, A .
NATURE NEUROSCIENCE, 2003, 6 (11) :1194-1200
[2]   Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor [J].
Aicardi, G ;
Argilli, E ;
Cappello, S ;
Santi, S ;
Riccio, M ;
Thoenen, H ;
Canossa, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15788-15792
[3]   PAK3 mutation in nonsyndromic X-linked mental retardation [J].
Allen, KM ;
Gleeson, JG ;
Bagrodia, S ;
Partington, MW ;
MacMillan, JC ;
Cerione, RA ;
Mulley, JC ;
Walsh, CA .
NATURE GENETICS, 1998, 20 (01) :25-30
[4]   ORIGINS OF THE VARIATIONS IN LONG-TERM POTENTIATION BETWEEN SYNAPSES IN THE BASAL VERSUS APICAL DENDRITES OF HIPPOCAMPAL-NEURONS [J].
ARAI, A ;
BLACK, J ;
LYNCH, G .
HIPPOCAMPUS, 1994, 4 (01) :1-9
[5]   ANOXIA REVEALS A VULNERABLE PERIOD IN THE DEVELOPMENT OF LONG-TERM POTENTIATION [J].
ARAI, A ;
LARSON, J ;
LYNCH, G .
BRAIN RESEARCH, 1990, 511 (02) :353-357
[6]  
Bahr BA, 1997, J NEUROSCI, V17, P1320
[7]  
Balkowiec A, 2002, J NEUROSCI, V22, P10399
[8]  
Barde Y A, 1994, Prog Clin Biol Res, V390, P45
[9]   THE EFFECTS OF REPETITIVE LOW-FREQUENCY STIMULATION ON CONTROL AND POTENTIATED SYNAPTIC RESPONSES IN THE HIPPOCAMPUS [J].
BARRIONUEVO, G ;
SCHOTTLER, F ;
LYNCH, G .
LIFE SCIENCES, 1980, 27 (24) :2385-2391
[10]   Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons [J].
Bernstein, BW ;
DeWit, M ;
Bamburg, JR .
MOLECULAR BRAIN RESEARCH, 1998, 53 (1-2) :236-250