Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes

被引:181
作者
Oh, H [1 ]
Fujio, Y [1 ]
Kunisada, K [1 ]
Hirota, H [1 ]
Matsui, H [1 ]
Kishimoto, T [1 ]
Yamauchi-Takihara, K [1 ]
机构
[1] Osaka Univ, Sch Med, Dept Med 3, Suita, Osaka 565, Japan
关键词
D O I
10.1074/jbc.273.16.9703
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphatidylinositol (PI) 3-kinase is known to be activated by cytokine stimulation through different types of receptors to transduce intracellular responses. We have previously reported that leukemia inhibitory factor (LIF) induces the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and mitogen-activated protein (MAP) kinase pathways through glycoprotein (gp) 130 in cardiac myocytes, However, whether PI 3-kinase is involved in regulation of gp130 signaling and the activation mechanisms by which it associates with other tyrosine-phosphorylated proteins remain unknown. We found that LIF induced the activation of PI 3-kinase in cardiac myocytes, Moreover, JAK1 binds to PI 3-kinase, and LIF stimulation increases the PI 3-kinase activity in JAK1 immunoprecipitates. Activation of MAP kinase and protein kinase B by LIF was attenuated by wortmannin. LIF-induced p70 S6 kinase activation, protein synthesis, and c-fos mRNA expression were inhibited by wortmannin and rapamycin. Both inhibitors failed to appreciably affect the phosphorylation of STAT3. In conclusion, PI 3-kinase is activated with LIF in cardiac myocytes, and JAK1 is found to associate with this enzyme. PI 3-kinase provides a crucial link between gp130, MAP kinase, protein kinase B, and p70 S6 kinase in cardiac myocytes.
引用
收藏
页码:9703 / 9710
页数:8
相关论文
共 64 条
[1]   Rapamycin inhibits alpha(1)-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes - Evidence for involvement of p70 S6 kinase [J].
Boluyt, MO ;
Zheng, JS ;
Younes, A ;
Long, XL ;
ONeill, L ;
Silverman, H ;
Lakatta, EG ;
Crow, MT .
CIRCULATION RESEARCH, 1997, 81 (02) :176-186
[2]  
BOULTON TG, 1994, J BIOL CHEM, V269, P11648
[3]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[4]   ONCOGENES AND SIGNAL TRANSDUCTION [J].
CANTLEY, LC ;
AUGER, KR ;
CARPENTER, C ;
DUCKWORTH, B ;
GRAZIANI, A ;
KAPELLER, R ;
SOLTOFF, S .
CELL, 1991, 64 (02) :281-302
[5]  
CARPENTER CL, 1990, J BIOL CHEM, V265, P19704
[6]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[7]   STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation [J].
Chung, JK ;
Uchida, E ;
Grammer, TC ;
Blenis, J .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (11) :6508-6516
[8]   PDGF-DEPENDENT AND INSULIN-DEPENDENT PP70(S6K) ACTIVATION MEDIATED BY PHOSPHATIDYLINOSITOL-3-OH KINASE [J].
CHUNG, JK ;
GRAMMER, TC ;
LEMON, KP ;
KAZLAUSKAS, A ;
BLENIS, J .
NATURE, 1994, 370 (6484) :71-75
[9]   Activation of a mitogen-activated protein kinase (ERK2) by the 5-hydroxytryptamine(1A) receptor is sensitive not only to inhibitors of phosphatidylinositol 3-kinase, but to an inhibitor of phosphatidylcholine hydrolysis [J].
Cowen, DS ;
Sowers, RS ;
Manning, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22297-22300
[10]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789