Layer-by-layer engineering of biocompatible, decomposable core-shell structures

被引:176
作者
Shenoy, DB [1 ]
Antipov, AA [1 ]
Sukhorukov, GB [1 ]
Möhwald, H [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
关键词
D O I
10.1021/bm025661y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The objective of the present investigation was to fabricate composite colloidal particles consisting of a sacrificial, decomposable template of biodegradable nature covered with biocompatible polyelectrolyte multilayers using the layer-by-layer sequential adsorption technique. Poly-DL-lactic acid and poly(DL-lactic-co-glycolic acid) were chosen to design the microparticulate template, and a preliminary feasibility study was carried out with poly(styrene sulfonate sodium)-poly(allylamine hydrochloride) as shell components. The properties of both core-shell and hollow structures obtained by core dissolution were characterized by confocal laser scanning microscopy, microelectrophoresis, scanning force microscopy, and scanning electron microscopy. The concept was then extended to biocompatible polyelectrolytes as shell wall building blocks to deduce stable hollow capsules with tailored properties. Uniform, complete coating with oppositely charged polyelectrolyte pairs was achieved for all the combinations investigated. The results demonstrate that polyester microparticles could serve as viable alternative components to conventionally employed templates to derive hollow capsules with defined size, shape, and shell thickness. With all the components used for fabrication being biocompatible, these polyelectrolyte capsules may find interesting applications in the fields of biology, biochemistry, biotechnology, and drug delivery.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
[1]   Electrostatic layer-by-layer nanoassembly on biological microtemplates: Platelets [J].
Ai, H ;
Fang, M ;
Jones, SA ;
Lvov, YM .
BIOMACROMOLECULES, 2002, 3 (03) :560-564
[2]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[3]   Polyelectrolyte multilayer capsule permeability control [J].
Antipov, AA ;
Sukhorukov, GB ;
Leporatti, S ;
Radtchenko, IL ;
Donath, E ;
Möhwald, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 198 :535-541
[4]   Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: Factors regulating the protein release [J].
Balabushevitch, NG ;
Sukhorukov, GB ;
Moroz, NA ;
Volodkin, DV ;
Larionova, NI ;
Donath, E ;
Mohwald, H .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (03) :207-213
[5]   Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate [J].
Berth, G ;
Voigt, A ;
Dautzenberg, H ;
Donath, E ;
Möhwald, H .
BIOMACROMOLECULES, 2002, 3 (03) :579-590
[6]   Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation:: a review [J].
Böstman, O ;
Pihlajamäki, H .
BIOMATERIALS, 2000, 21 (24) :2615-2621
[7]  
Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
[8]  
2-N
[9]   Protein multilayer formation on colloids through a stepwise self-assembly technique [J].
Caruso, F ;
Möhwald, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (25) :6039-6046
[10]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .3. CONSECUTIVELY ALTERNATING ADSORPTION OF ANIONIC AND CATIONIC POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD ;
SCHMITT, J .
THIN SOLID FILMS, 1992, 210 (1-2) :831-835