Massless field perturbations and gravitomagnetism in the Kerr-Taub-NUT spacetime

被引:30
作者
Bini, D [1 ]
Cherubini, C
Jantzen, RT
Mashhoon, B
机构
[1] CNR, Ist Applicaz Calcolo M Picone, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Int Ctr Relativist Astrophys, I-00185 Rome, Italy
[3] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England
[4] Villanova Univ, Dept Math Sci, Villanova, PA 19085 USA
[5] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
关键词
D O I
10.1103/PhysRevD.67.084013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A single master equation is given describing spin sless than or equal to2 test fields that are gauge- and tetrad-invariant perturbations of the Kerr-Taub-NUT (Newman-Unti-Tamburino) spacetime representing a source with a mass M, gravitomagnetic monopole moment -l, and gravitomagnetic dipole moment (angular momentum) per unit mass a. This equation can be separated into its radial and angular parts. The behavior of the radial functions at infinity and near the horizon is studied and used to examine the influence of l on the phenomenon of superradiance, while the angular equation leads to spin-weighted spheroidal harmonic solutions generalizing those of the Kerr spacetime. Finally, the coupling between the spin of the perturbing field and the gravitomagnetic monopole moment is discussed.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Supersymmetry of topological Kerr-Newman-Taub-NUT-adS spacetimes [J].
Alonso-Alberca, N ;
Meessen, P ;
Ortín, T .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (14) :2783-2797
[2]  
[Anonymous], 1957, SOV PHYS DOKLADY
[3]   RADIATION FIELDS IN SCHWARZSCHILD BACKGROUND [J].
BARDEEN, JM ;
PRESS, WH .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (01) :7-19
[4]   Circular holonomy and clock effects in stationary axisymmetric spacetimes [J].
Bini, D ;
Jantzen, RT ;
Mashhoon, B .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (01) :17-37
[5]   Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime [J].
Bini, D ;
Cherubini, C ;
Jantzen, RT ;
Mashhoon, B .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) :457-468
[6]   Teukolsky master equation - de Rham wave equation for gravitational and electromagnetic fields in vacuum [J].
Bini, D ;
Cherubini, C ;
Jantzen, RT ;
Ruffini, R .
PROGRESS OF THEORETICAL PHYSICS, 2002, 107 (05) :967-992
[7]   The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential [J].
Blunden, PG ;
Okuhara, Y ;
Raskin, AS .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1998, 24 (04) :719-724
[8]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[9]  
Chandrasekhar S., 1983, MATH THEORY BLACK HO
[10]  
DEMIANSKI M, 1966, B ACAD POL SCI SMAP, V14, P653