Multicriterion clusterwise regression for joint segmentation settings: An application to customer value

被引:45
作者
Brusco, MJ [1 ]
Cradit, JD
Tashchian, A
机构
[1] Florida State Univ, Coll Business, Tallahassee, FL 32306 USA
[2] Kennesaw State Coll, Coles Coll Business, Kennesaw, GA 30144 USA
关键词
D O I
10.1509/jmkr.40.2.225.19227
中图分类号
F [经济];
学科分类号
02 ;
摘要
The authors present a multicriterion clusterwise linear regression model that can be applied to a joint segmentation setting. The model enables the consideration of segment homogeneity, as well as multiple dependent variables (segmentation bases), in a weighted objective function. The authors propose a heuristic solution strategy based on simulated annealing and examine trade-offs in the recovery of multiple true cluster structures for several synthetic data sets. They also propose an application of the model to a joint segmentation problem in the telecommunications industry, which addresses important issues pertaining to the selection of the objective function weights and the number of clusters.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 33 条
[1]  
Banfield C. F., 1977, Applied Statistics, V26, P206, DOI 10.2307/2347039
[2]   REPLICATING CLUSTER-ANALYSIS - METHOD, CONSISTENCY, AND VALIDITY [J].
BRECKENRIDGE, JN .
MULTIVARIATE BEHAVIORAL RESEARCH, 1989, 24 (02) :147-161
[3]   A simulated annealing heuristic for a bicriterion partitioning problem in market segmentation [J].
Brusco, MJ ;
Cradit, JD ;
Stahl, S .
JOURNAL OF MARKETING RESEARCH, 2002, 39 (01) :99-109
[4]   Identifying a reordering of rows and columns for multiple proximity matrices using multiobjective programming [J].
Brusco, MJ .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2002, 46 (06) :731-745
[5]   A variable-selection heuristic for K-means clustering [J].
Brusco, MJ ;
Cradit, JD .
PSYCHOMETRIKA, 2001, 66 (02) :249-270
[6]   An Interactive multiobjective programming approach to combinatorial data analysis [J].
Brusco, MJ ;
Stahl, S .
PSYCHOMETRIKA, 2001, 66 (01) :5-24
[7]   HlNoV: A new model to improve market segment definition by identifying noisy variables [J].
Carmone, FJ ;
Kara, A ;
Maxwell, S .
JOURNAL OF MARKETING RESEARCH, 1999, 36 (04) :501-509
[8]   BICRITERION CLUSTER-ANALYSIS [J].
DELATTRE, M ;
HANSEN, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1980, 2 (04) :277-291
[9]  
DeSarbo S., 1996, J CONSUM PSYCHOL, V5, P231, DOI DOI 10.1207/S15327663JCP0503_02
[10]  
DeSarbo W.S., 1998, Marketing Letters, V9, P115, DOI [https://doi.org/10.1023/A:1007997714444, DOI 10.1023/A:1007997714444]