Key aspects of analyzing microarray gene-expression data

被引:40
作者
Chen, James J. [1 ]
机构
[1] US FDA, Div Personalized Nutr & Med, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA
关键词
class comparison; class prediction; cross validation; gene class testing; gene selection; multiple selection criteria; multiple testing; significance analysis;
D O I
10.2217/14622416.8.5.473
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
One major challenge with the use of microarray technology is the analysis of massive amounts of gene-expression data for various applications. This review addresses the key aspects of the microarray gene-expression data analysis for the two most common objectives: class comparison and class prediction. Class comparison mainly aims to select which genes are differentially expressed across experimental conditions. Gene selection is separated into two steps: gene ranking and assigning a significance level. Class prediction uses expression profiling analysis to develop a prediction model for patient selection, diagnostic prediction or prognostic classification. Development of a prediction model involves two components: model building and performance assessment. It also describes two additional data analysis methods: gene-class testing and multiple ordering criteria.
引用
收藏
页码:473 / 482
页数:10
相关论文
共 57 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[3]  
[Anonymous], DESIGN ANAL INTERPRE
[4]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[7]  
Brieman L, 1995, CART CLASSIFICATION
[8]  
Chen J., 2003, ENCY BIOPHARMACEUTIC, P599
[9]   Gene selection with multiple ordering criteria [J].
Chen, James J. ;
Tsai, Chen-An ;
Tzeng, ShengLi ;
Chen, Chun-Houh .
BMC BIOINFORMATICS, 2007, 8 (1)
[10]   Analysis of variance components in gene expression data [J].
Chen, JJ ;
Delongchamp, RR ;
Tsai, CA ;
Hsueh, HM ;
Sistare, F ;
Thompson, KL ;
Desai, VG ;
Fuscoe, JC .
BIOINFORMATICS, 2004, 20 (09) :1436-1446