On finitely terminating branch-and-bound algorithms for some global optimization problems

被引:26
作者
Al-Khayyal, FA [1 ]
Sherali, HD
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Virginia Polytech Inst & State Univ, Dept Ind & Syst Engn, Blacksburg, VA 24061 USA
关键词
finite convergence; global optimization; branch-and-bound; concave; bilinear;
D O I
10.1137/S105262349935178X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Global optimization algorithms are typically terminated with an epsilon-approximate solution after a finite number of iterations. This paper shows how existing in finitely convergent branch-and-bound algorithms can be augmented to guarantee finite termination with an exact global solution for problems having extreme point solutions.
引用
收藏
页码:1049 / 1057
页数:9
相关论文
共 23 条
[1]   FINITE CONVERGENCE OF ALGORITHMS FOR NONLINEAR PROGRAMS AND VARIATIONAL-INEQUALITIES [J].
ALKHAYYAL, F ;
KYPARISIS, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 70 (02) :319-332
[2]   NOTE ON SOLVING LINEAR COMPLEMENTARITY-PROBLEMS AS JOINTLY CONSTRAINED BILINEAR PROGRAMS [J].
ALKHAYYAL, FA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 158 (02) :583-589
[3]  
ALKHAYYAL FA, 1983, MATH OPER RES, V8, P272
[4]   A FINITE ALGORITHM FOR CONCAVE MINIMIZATION OVER A POLYHEDRON [J].
BENSON, HP .
NAVAL RESEARCH LOGISTICS, 1985, 32 (01) :165-177
[5]   A FINITE CONCAVE MINIMIZATION ALGORITHM USING BRANCH-AND-BOUND AND NEIGHBOR GENERATION [J].
BENSON, HP ;
SAYIN, S .
JOURNAL OF GLOBAL OPTIMIZATION, 1994, 5 (01) :1-14
[6]  
CHARNES A, 1963, 84 NW U OFF NAV RES
[7]  
CHARNES KO, 1965, 129 NW U SYST
[8]  
GACS P, 1981, MATH PROGRAM STUD, V14, P61, DOI 10.1007/BFb0120921
[9]  
Hadamard J., 1893, Bull. Sci. Math., V2, P240
[10]   EXHAUSTIVE NONDEGENERATE CONICAL PROCESSES FOR CONCAVE MINIMIZATION ON CONVEX POLYTOPES [J].
HAMAMI, M ;
JACOBSEN, SE .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (03) :479-487