Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers

被引:84
作者
Alvarez, M
Carrascosa, LG
Moreno, M
Calle, A
Zaballos, A
Lechuga, LM
Martínez-A, C
Tamayo, J
机构
[1] CSIC, IMM, Biosensors Grp, Madrid, Spain
[2] CSIC, CNB, DIO, Ctr Nacl Biotecnol, E-28049 Madrid, Spain
关键词
D O I
10.1021/la0489559
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomolecular interactions over the surface of a microcantilever can produce its bending motion via changes of the surface stress, which is referred to nanomechanical response. Here, we have studied the interaction forces responsible for the bending motion during the formation of a self-assembled monolayer of thiolated 27-mer single-stranded DNA on the gold-coated side of a microcantilever and during the subsequent hybridization with the complementary nucleic acid. The immobilization of the single-stranded DNA probe gives a mean surface stress of 25 mN/m and a mean bending of 23 nm for microcantilevers with a length and thickness of about 200 mum and 0.8 mum, respectively. The hybridization with the complementary sequence could not be inferred from the nanomechanical response. The nanomechanical response was compared with data from well-established techniques such as surface plasmon resonance and radiolabeling, to determine the surface coverage and study the intermolecular forces between neighboring DNA molecules anchored to the microcantilever surface. From both techniques, an immobilization surface density of 3 x 10(12) molecules/cm(2) and a hybridization efficiency of 40% were determined. More importantly, label-free hybridization was clearly detected in the same conditions with a conventional sensor based on surface plasmon resonance. The results imply that the nanomechanical signal during the immobilization process arises mainly from the covalent attachment to the gold surface, and the interchain interactions between neighboring DNA molecules are weak, producing an undetectable surface stress. We conclude that detection of nucleic acid hybridization with nanomechanical sensors requires reference cantilevers to remove nonspecific signals, more sensitive microcantilever geometries, and immobilization chemistries specially addressed to enhance the surface stress variations.
引用
收藏
页码:9663 / 9668
页数:6
相关论文
共 24 条
  • [1] AGUILAR MR, IN PRESS MACROMOL BI
  • [2] Development of nanomechanical biosensors for detection of the pesticide DDT
    Alvarez, M
    Calle, A
    Tamayo, J
    Lechuga, LM
    Abad, A
    Montoya, A
    [J]. BIOSENSORS & BIOELECTRONICS, 2003, 18 (5-6) : 649 - 653
  • [3] END GROUP LABELING OF RNA AND DOUBLE STRANDED DNA BY PHOSPHATE EXCHANGE CATALYZED BY BACTERIOPHAGE-T4 INDUCED POLYNUCLEOTIDE KINASE
    CHACONAS, G
    VANDESANDE, JH
    CHURCH, RB
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1975, 66 (03) : 962 - 969
  • [4] FLUORESCENT LABELING OF TRANSFER-RNA AND OLIGODEOXYNUCLEOTIDES USING T4-RNA LIGASE
    COSSTICK, R
    MCLAUGHLIN, LW
    ECKSTEIN, F
    [J]. NUCLEIC ACIDS RESEARCH, 1984, 12 (04) : 1791 - 1810
  • [5] Translating biomolecular recognition into nanomechanics
    Fritz, J
    Baller, MK
    Lang, HP
    Rothuizen, H
    Vettiger, P
    Meyer, E
    Güntherodt, HJ
    Gerber, C
    Gimzewski, JK
    [J]. SCIENCE, 2000, 288 (5464) : 316 - 318
  • [6] GEORGIADIS R, 2000, J AM CHEM SOC, V122, P13
  • [7] Nanomechanical forces generated by surface grafted DNA
    Hagan, MF
    Majumdar, A
    Chakraborty, AK
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (39) : 10163 - 10173
  • [8] Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches
    Hansen, KM
    Ji, HF
    Wu, GH
    Datar, R
    Cote, R
    Majumdar, A
    Thundat, T
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (07) : 1567 - 1571
  • [9] HERNE TM, 1997, J AM CHEM SOC, V119, P38
  • [10] ISRAELACHVILI JN, 1991, INTERMOLECULAR SURFA