Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds

被引:590
作者
Leach, JB
Bivens, KA
Patrick, CW
Schmidt, CE
机构
[1] Univ Texas, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Plast Surg, Houston, TX 77030 USA
[4] Univ Texas, Texas Mat Inst, Austin, TX 78712 USA
关键词
biomimetic; degradable; hyaluronic acid; hydrogel; photopolymerization; tissue engineering;
D O I
10.1002/bit.10605
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wound healing, such as angiogenesis. Hyaluronic acid also presents unique advantages: it is easy to produce and modify, hydrophilic and nonadhesive, and naturally biodegradable. We prepared a range of glycidyl methacrylate-HA (GMHA) conjugates, which were subsequently photopolymerized to form crosslinked GMHA hydrogels. A range of hydrogel degradation rates was achieved as well as a corresponding, modest range of material properties (e.g., swelling, mesh size). Increased amounts of conjugated methacrylate groups corresponded with increased crosslink densities and decreased degradation rates and yet had an insignificant effect on human aortic endothelial cell cytocompatibility and proliferation. Rat subcutaneous implants of the GMHA hydrogels showed good biocompatibility, little inflammatory response, and similar levels of vascularization at the implant edge compared with those of fibrin positive controls. Therefore, these novel GMHA bydrogels are suitable for modification with adhesive peptide sequences (e.g., RGD) and use in a variety of wound-healing applications. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:578 / 589
页数:12
相关论文
共 41 条
[1]   New directions in photopolymerizable biomaterials [J].
Anseth, KS ;
Burdick, JA .
MRS BULLETIN, 2002, 27 (02) :130-136
[2]  
Band PA, 1998, WENN GR INT, V72, P33
[3]   A technique for quantitative three-dimensional analysis of microvascular structure [J].
Brey, EM ;
King, TW ;
Johnston, C ;
McIntire, LV ;
Reece, GP ;
Patrick, CW .
MICROVASCULAR RESEARCH, 2002, 63 (03) :279-294
[4]   Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J].
Bryant, SJ ;
Nuttelman, CR ;
Anseth, KS .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (05) :439-457
[5]  
Bulpitt P, 1999, J BIOMED MATER RES, V47, P152
[6]  
Cadée JA, 2000, J BIOMED MATER RES, V50, P397
[7]   Functions of hyaluronan in wound repair [J].
Chen, WYJ ;
Abatangelo, G .
WOUND REPAIR AND REGENERATION, 1999, 7 (02) :79-89
[8]   IONIC POLYSACCHARIDES .3. DILUTE SOLUTION PROPERTIES OF HYALURONIC ACID FRACTIONS [J].
CLELAND, RL ;
WANG, JL .
BIOPOLYMERS, 1970, 9 (07) :799-&
[10]   In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes [J].
Cruise, GM ;
Hegre, OD ;
Lamberti, FV ;
Hager, SR ;
Hill, R ;
Scharp, DS ;
Hubbell, JA .
CELL TRANSPLANTATION, 1999, 8 (03) :293-306