Performance analysis of Jakimoski-Kocarev attack on a class of chaotic cryptosystems

被引:41
作者
Li, SJ [1 ]
Mou, XQ
Ji, Z
Zhang, JH
Cai, YL
机构
[1] Xian Jiaotong Univ, Sch Elect & Informat Engn, Inst Image Proc, Xian 710049, Shaanxi, Peoples R China
[2] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Guangdong, Peoples R China
关键词
chaotic encryption system; cryptanalysis; cryptography;
D O I
10.1016/S0375-9601(02)01659-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently Jakimoski and Kocarev cryptanalyzed two chaotic cryptosystems without using chaotic synchronization-Baptista cryptosystem and Alvarez cryptosystem. As a result, they pointed out that neither of the two cryptosystems are secure to known-plaintext attacks. In this Letter, we re-study the performance of Jakimoski-Kocarev attack on Baptista cryptosystem and find that it is not efficient enough as a practical attack tool. Furthermore, a simple but effective remedy is presented to resist Jakimoski-Kocarev attack, and the detailed discussion on its performance are given. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 27 条
[1]   New approach to chaotic encryption [J].
Alvarez, E ;
Fernández, A ;
García, P ;
Jiménez, J ;
Marcano, A .
PHYSICS LETTERS A, 1999, 263 (4-6) :373-375
[2]   Cryptanalysis of a chaotic encryption system [J].
Alvarez, G ;
Montoya, F ;
Romera, M ;
Pastor, G .
PHYSICS LETTERS A, 2000, 276 (1-4) :191-196
[3]  
Alvarez G., 1999, Proceedings IEEE 33rd Annual 1999 International Carnahan Conference on Security Technology (Cat. No.99CH36303), P332, DOI 10.1109/CCST.1999.797933
[4]   Cryptography with chaos [J].
Baptista, MS .
PHYSICS LETTERS A, 1998, 240 (1-2) :50-54
[5]  
BIHAM E, 1991, LECT NOTES COMPUT SC, V547, P532
[6]   Clarifying chaos: Examples and counterexamples [J].
Brown, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :219-249
[7]  
CASTLEMAN K. R., 1996, Digital image processing
[8]   Chaos and cryptography [J].
Dachselt, F ;
Schwarz, W .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (12) :1498-1509
[9]   Symmetric ciphers based on two-dimensional chaotic maps [J].
Fridrich, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (06) :1259-1284
[10]  
HABUTSU T, 1991, LECT NOTES COMPUT SC, V547, P127