Meristem identity and phyllotaxis in inflorescence development

被引:40
作者
Bartlett, Madelaine E. [1 ]
Thompson, Beth [2 ]
机构
[1] Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA
[2] E Carolina Univ, Dept Biol, Greenville, NC USA
来源
FRONTIERS IN PLANT SCIENCE | 2014年 / 5卷
基金
美国国家科学基金会;
关键词
inflorescence; phyllotaxis; inflorescence morphology; auxin; meristem identity; inflorescence evolution; MAIZE HOMEOBOX GENE; FLORAL MERISTEM; FLOWER DEVELOPMENT; AUXIN TRANSPORT; REPRODUCTIVE DEVELOPMENT; SHOOT; ARCHITECTURE; ENCODES; LEAF; OVEREXPRESSION;
D O I
10.3389/fpls.2014.00508
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of menstem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the menstem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.
引用
收藏
页数:11
相关论文
共 118 条
[31]   Disentangling confusions in inflorescence morphology: Patterns and diversity of reproductive shoot ramification in angiosperms [J].
Endress, Peter K. .
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2010, 48 (04) :225-239
[32]   Regulatory modules controlling maize inflorescence architecture [J].
Eveland, Andrea L. ;
Goldshmidt, Alexander ;
Pautler, Michael ;
Morohashi, Kengo ;
Liseron-Monfils, Christophe ;
Lewis, Michael W. ;
Kumari, Sunita ;
Hiraga, Susumu ;
Yang, Fang ;
Unger-Wallace, Erica ;
Olson, Andrew ;
Hake, Sarah ;
Vollbrecht, Erik ;
Grotewold, Erich ;
Ware, Doreen ;
Jackson, David .
GENOME RESEARCH, 2014, 24 (03) :431-443
[33]   A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux [J].
Friml, J ;
Yang, X ;
Michniewicz, M ;
Weijers, D ;
Quint, A ;
Tietz, O ;
Benjamins, R ;
Ouwerkerk, PBF ;
Ljung, K ;
Sandberg, G ;
Hooykaas, PJJ ;
Palme, K ;
Offringa, R .
SCIENCE, 2004, 306 (5697) :862-865
[34]   Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production [J].
Fu, Chunxiang ;
Sunkar, Ramanjulu ;
Zhou, Chuanen ;
Shen, Hui ;
Zhang, Ji-Yi ;
Matts, Jessica ;
Wolf, Jennifer ;
Mann, David G. J. ;
Stewart, C. Neal, Jr. ;
Tang, Yuhong ;
Wang, Zeng-Yu .
PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (04) :443-452
[35]   sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize [J].
Gallavotti, Andrea ;
Barazesh, Solmaz ;
Malcomber, Simon ;
Hall, Darren ;
Jackson, David ;
Schmidt, Robert J. ;
McSteen, Paula .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (39) :15196-15201
[36]   The relationship between auxin transport and maize branching [J].
Gallavotti, Andrea ;
Yang, Yan ;
Schmidt, Robert J. ;
Jackson, David .
PLANT PHYSIOLOGY, 2008, 147 (04) :1913-1923
[37]   Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue [J].
Gälweiler, L ;
Guan, CH ;
Müller, A ;
Wisman, E ;
Mendgen, K ;
Yephremov, A ;
Palme, K .
SCIENCE, 1998, 282 (5397) :2226-2230
[38]   Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1 [J].
Giulini, A ;
Wang, J ;
Jackson, D .
NATURE, 2004, 430 (7003) :1031-1034
[39]   Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems [J].
Goldshmidt, Alexander ;
Alvarez, John Paul ;
Bowman, John L. ;
Eshed, Yuval .
PLANT CELL, 2008, 20 (05) :1217-1230
[40]   PIN1-Independent Leaf Initiation in Arabidopsis [J].
Guenot, Bernadette ;
Bayer, Emmanuelle ;
Kierzkowski, Daniel ;
Smith, Richard S. ;
Mandel, Therese ;
Zadnikova, Petra ;
Benkova, Eva ;
Kuhlemeier, Cris .
PLANT PHYSIOLOGY, 2012, 159 (04) :1501-1510