Analytical approximations for real values of the Lambert W-function

被引:193
作者
Barry, DA [1 ]
Parlange, JY
Li, L
Prommer, H
Cunningham, CJ
Stagnitti, E
机构
[1] Univ Edinburgh, Contaminated Land Assessment & Remediat Res Ctr, Edinburgh EH9 3JN, Midlothian, Scotland
[2] Cornell Univ, Dept Agr & Biol Engn, Ithaca, NY 14853 USA
[3] Deakin Univ, Sch Ecol & Environm, Warrnambool, Vic 3280, Australia
关键词
analytical approximations; algorithms; iteration scheme;
D O I
10.1016/S0378-4754(00)00172-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Lambert W is a transcendental function defined by solutions of the equation W exp(W) = x. For real values of the argument, x, the W-function has two branches, W-0 (the principal branch) and W-1 (the negative branch). A survey of the literature reveals that, in the case of the principal branch (W-0), the vast majority of W-function applications use, at any given time, only a portion of the branch viz. the parts defined by the ranges -1 less than or equal to W-0 less than or equal to 0 and 0 less than or equal to W-0. Approximations are presented for each portion of W-0, and for W-1. It is shown that the present approximations are very accurate with relative errors down to around 0.02% or smaller. The approximations can be used directly, or as starting values for iterative improvement schemes. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 41 条
[1]  
Anderson J.D., 1989, INTRO FLIGHT
[2]  
[Anonymous], HDB ALGORITHMS DATA
[3]  
[Anonymous], MAPLE 5 LIB REFERENC
[4]  
Appelquist T, 1998, PHYS REV D, V58, DOI 10.1103/PhysRevD.58.105017
[5]   A CLASS OF EXACT-SOLUTIONS FOR RICHARDS EQUATION [J].
BARRY, DA ;
PARLANGE, JY ;
SANDER, GC ;
SIVAPALAN, M .
JOURNAL OF HYDROLOGY, 1993, 142 (1-4) :29-46
[6]   REAL VALUES OF THE W-FUNCTION [J].
BARRY, DA ;
CULLIGANHENSLEY, PJ ;
BARRY, SJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (02) :161-171
[7]  
BARRY DA, 1995, ACM T MATH SOFTWARE, V21, P172, DOI 10.1145/203082.203088
[8]  
BARRY DA, 1996, SUBSURFACE WATER HYD, V2, P33
[9]   Mathematical properties of models of the reaction-diffusion type [J].
Beccaria, M ;
Soliani, G .
PHYSICA A, 1998, 260 (3-4) :301-337
[10]   Global approximations to the principal real-valued branch of the Lambert W-function [J].
Boyd, JP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (06) :27-31