A NOVEL FRACTIONAL-ORDER HYPERCHAOTIC SYSTEM AND ITS CIRCUIT REALIZATION

被引:16
作者
Liu, Chongxin [1 ]
Lu, Junjie [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
[2] State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2010年 / 24卷 / 10期
关键词
Fractional-order hyperchaos; Liu system; circuit realization; CHEN SYSTEM; CHAOS; EQUATION;
D O I
10.1142/S0217979210053707
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a fractional-order hyperchaotic system evolved from Liu system is proposed. Based on the theory of fractional calculus, a novel circuit diagram is designed for hardware implementation of the fractional-order hyperchaotic Liu system. Furthermore, implementation results reveal that hyperchaos can be generated in the hyperchaotic Liu system with the system order as low as 3.6 and numerical analysis results demonstrate that the lowest order of the fractional-order Liu system is 0.4.
引用
收藏
页码:1299 / 1307
页数:9
相关论文
共 17 条
  • [1] Chaos in fractional-order autonomous nonlinear systems
    Ahmad, WM
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 339 - 351
  • [2] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [3] FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION
    CHAREF, A
    SUN, HH
    TSAO, YY
    ONARAL, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) : 1465 - 1470
  • [4] Synchronization of chaotic fractional Chen system
    Deng, WH
    Li, CP
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) : 1645 - 1648
  • [5] Chaos in the fractional order Chen system and its control
    Li, CG
    Chen, GR
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 549 - 554
  • [6] Chaos and hyperchaos in the fractional-order Rossler equations
    Li, CG
    Chen, GR
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 55 - 61
  • [7] Chaos in Chen's system with a fractional order
    Li, CP
    Peng, GJ
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (02) : 443 - 450
  • [8] Hyperchaos evolved from the generalized Lorenz equation
    Li, YX
    Tang, WKS
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2005, 33 (04) : 235 - 251
  • [9] A new chaotic attractor
    Liu, CX
    Liu, T
    Liu, L
    Liu, K
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1031 - 1038
  • [10] LU JG, 2006, CHAOS SOLITON FRACT, V14, P669