On the distribution of free path lengths for the periodic Lorentz gas

被引:71
作者
Bourgain, J [1 ]
Golse, F
Wennberg, B
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Univ Paris 07, F-75005 Paris, France
[3] Ecole Normale Super, DMI, F-75005 Paris, France
[4] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
D O I
10.1007/s002200050249
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider the domain Z(epsilon) = {x is an element of R-n/dist(x, epsilon Z(n)) > epsilon(gamma)}, and let the free path length be defined as tau(epsilon)(x, omega) = inf{t > 0 \x - t omega is an element of Z(epsilon)}. The distribution of values of tau(epsilon) is studied in the limit as epsilon --> 0 for all gamma greater than or equal to 1. It is shown that the value gamma(c) = n/n-1 is critical for this problem: in other words, the limiting behavior of tau(epsilon) depends only on whether gamma is larger or smaller than gamma(c).
引用
收藏
页码:491 / 508
页数:18
相关论文
共 24 条
[1]   Diffusion approximation for billiards with totally accommodating scatterers [J].
Bardos, C ;
Dumas, L ;
Golse, F .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (1-2) :351-375
[2]  
Bilingsley P., 1995, PROBABILITY MEASURE
[3]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[4]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[5]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG ;
CHERNOV, NI .
RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) :47-106
[6]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[7]   MARKOV PARTITIONS FOR 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG ;
CHERNOV, NI .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (03) :105-152
[8]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[9]  
Cassels J. W. S., 1957, An Introduction to Diophantine Approximation
[10]  
CHERNOV N, 1996, ENTROPY LYAPUNOV EXP