Anandamide metabolism by fatty acid amide hydrolase in intact C6 glioma cells. Increased sensitivity to inhibition by ibuprofen and flurbiprofen upon reduction of extra- but not intracellular pH

被引:19
作者
Holt, S [1 ]
Fowler, CJ [1 ]
机构
[1] Umea Univ, Dept Pharmacol & Clin Neurosci, S-90187 Umea, Sweden
关键词
anandamide; fatty acid amidohydrolase; ibuprofen; flurbiprofen;
D O I
10.1007/s00210-002-0686-z
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The metabolism of anandamide by fatty acid amidohydrolase (FAAH) at different intra- and extracellular pH values has been investigated in intact C6 rat glioma cells. The cellular uptake of anandamide at 37degreesC was found to decrease by 28% when the extracellular pH (pH(e)) was reduced from pH 7.4 to pH 6.2. In contrast, a selective decrease in intracellular pH (pH(i)), accomplished by acidifying the cells followed by incubation in sodium-free buffer at pH 7.4, did not affect the uptake. Anandamide uptake was inhibited by (R)-ibuprofen, with pI(50) values of 3.05 +/- 0.57, 3.66 +/- 0.23 and 3.94 +/- 0.88 at pH(e) values of 7.4, 6.8 and 6.2, respectively. In the presence of phenylmethylsulfonyl fluoride, however, (R)-ibuprofen failed to inhibit the uptake of anandamide. A reduction in pHe from 7.4 to 6.2 produced a 17% reduction in the FAAH-catalyzed metabolism of anandamide in the intact C6 cells. However, an increased sensitivity of FAAH activity to inhibition by (R)-ibuprofen as well as (R,S)-flurbiprofen and (S)-flurbiprofen was seen at a lower pH(e). For (R)-ibuprofen, pI(50) values of 3.57 +/- 0.08, 4.04 +/- 0.05 and 4.59 +/- 0.04 were found at pH(e) values of 7.4, 6.8 and 6.2, respectively. For (R,S)- and (S)-flurbiprofen, the pI(50) values at pH(e) 7.4 were 4.02 +/- 0.05 and 4.13 +/- 0.18, respectively at a pH(e) of 7.4, and 4.81 +/- 0.11 and 4.84 +/- 0.10, respectively, at a pH(e) of 6.2. In contrast, intracellular acidification did not affect either the rate of anandamide metabolism or its inhibition by (R)-ibuprofen or (S)-flurbiprofen. It is concluded that a reduction of extracellular pH produces an enhanced accumulation of the acidic NSAIDs ibuprofen and flurbiprofen into C6 glioma cells and thereby an inhibition of anandamide metabolism.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 47 条
[1]  
Andersson SE, 1999, J RHEUMATOL, V26, P2018
[2]   PH-metric log P 11.: pKa determination of water-insoluble drugs in organic solvent-water mixtures [J].
Avdeef, A ;
Box, KJ ;
Comer, JEA ;
Gilges, M ;
Hadley, M ;
Hibbert, C ;
Patterson, W ;
Tam, KY .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1999, 20 (04) :631-641
[3]   Functional role of high-affinity anandamide transport, as revealed by selective inhibition [J].
Beltramo, M ;
Stella, N ;
Calignano, A ;
Lin, SY ;
Makriyannis, A ;
Piomelli, D .
SCIENCE, 1997, 277 (5329) :1094-1097
[4]   Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes [J].
Bisogno, T ;
Maurelli, S ;
Melck, D ;
DePetrocellis, L ;
DiMarzo, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3315-3323
[5]   Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase [J].
Cravatt, BF ;
Demarest, K ;
Patricelli, MP ;
Bracey, MH ;
Giang, DK ;
Martin, BR ;
Lichtman, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9371-9376
[6]   Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide [J].
Day, TA ;
Rakhshan, F ;
Deutsch, DG ;
Barker, EL .
MOLECULAR PHARMACOLOGY, 2001, 59 (06) :1369-1375
[7]   Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity [J].
De Petrocellis, L ;
Bisogno, T ;
Davis, JB ;
Pertwee, RG ;
Di Marzo, V .
FEBS LETTERS, 2000, 483 (01) :52-56
[8]   ENZYMATIC-SYNTHESIS AND DEGRADATION OF ANANDAMIDE, A CANNABINOID RECEPTOR AGONIST [J].
DEUTSCH, DG ;
CHIN, SA .
BIOCHEMICAL PHARMACOLOGY, 1993, 46 (05) :791-796
[9]   The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase [J].
Deutsch, DG ;
Glaser, ST ;
Howell, JM ;
Kunz, JS ;
Puffenbarger, RA ;
Hillard, CJ ;
Anbumrad, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :6967-6973
[10]   FORMATION AND INACTIVATION OF ENDOGENOUS CANNABINOID ANANDAMIDE IN CENTRAL NEURONS [J].
DIMARZO, V ;
FONTANA, A ;
CADAS, H ;
SCHINELLI, S ;
CIMINO, G ;
SCHWARTZ, JC ;
PIOMELLI, D .
NATURE, 1994, 372 (6507) :686-691