Aromatic residues and neighboring Arg414 in the (6R)-5,6,7,8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH

被引:26
作者
Sagami, I [1 ]
Sato, Y [1 ]
Daff, S [1 ]
Shimizu, T [1 ]
机构
[1] Tohoku Univ, Inst Chem React Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
D O I
10.1074/jbc.M000534200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7,8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676) Trp(678), Phe(691) His(692), and Tyr(706), together with the neighboring Ar-414 residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH, Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/L-Arg binding and/or electron transfer to the heme from NADPH, The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC50 value for H4B (30-40-fold of wild type). The Tyr706 phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Ar-414 to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH, Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/L-Arg binding and/or efficient electron transfer to occur.
引用
收藏
页码:26150 / 26157
页数:8
相关论文
共 52 条
[1]   SUBUNIT DISSOCIATION AND UNFOLDING OF MACROPHAGE NO SYNTHASE - RELATIONSHIP BETWEEN ENZYME STRUCTURE, PROSTHETIC GROUP BINDING, AND CATALYTIC FUNCTION [J].
ABUSOUD, HM ;
LOFTUS, M ;
STUEHR, DJ .
BIOCHEMISTRY, 1995, 34 (35) :11167-11175
[2]   Reaction of neuronal nitric-oxide synthase with oxygen at low temperature - Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin [J].
Bec, N ;
Gorren, ACF ;
Voelker, C ;
Mayer, B ;
Lange, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (22) :13502-13508
[3]   Anti-pterins as tools to characterize the function of tetrahydrobiopterin in NO synthase [J].
Bömmel, HM ;
Reif, A ;
Fröhlich, LG ;
Frey, A ;
Hofmann, H ;
Marecak, DM ;
Groehn, V ;
Kotsonis, P ;
La, ML ;
Köster, S ;
Meinecke, M ;
Bernhardt, M ;
Weeger, M ;
Ghisla, S ;
Prestwich, GD ;
Pfleiderer, W ;
Schmidt, HHW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33142-33149
[4]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[5]   INDUCIBLE NITRIC-OXIDE SYNTHASE - IDENTIFICATION OF AMINO-ACID-RESIDUES ESSENTIAL FOR DIMERIZATION AND BINDING OF TETRAHYDROBIOPTERIN [J].
CHO, HJ ;
MARTIN, E ;
XIE, QW ;
SASSA, S ;
NATHAN, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11514-11518
[6]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126
[7]   The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer [J].
Daff, S ;
Sagami, I ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30589-30595
[8]  
DAWSON JH, 1982, J BIOL CHEM, V257, P3606
[9]  
Feelisch M., 1996, METHODS NITRIC OXIDE
[10]   Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation [J].
Fischmann, TO ;
Hruza, A ;
Niu, XD ;
Fossetta, JD ;
Lunn, CA ;
Dolphin, E ;
Prongay, AJ ;
Reichert, P ;
Lundell, DJ ;
Narula, SK ;
Weber, PC .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (03) :233-242