Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium

被引:69
作者
Linke, WA
Fernandez, JM
机构
[1] Univ Heidelberg, Inst Physiol & Pathophysiol, D-69120 Heidelberg, Germany
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
D O I
10.1023/A:1023462507254
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Myocardium resists the inflow of blood during diastole through stretch-dependent generation of passive tension. Earlier we proposed that this tension is mainly due to collagen stiffness at degrees of stretch corresponding to sarcomere lengths (SLS) greater than or equal to2.2 mum, but at shorter lengths, is principally determined by the giant sarcomere protein titin. Myocardial passive force consists of stretch-velocity-sensitive (viscous/viscoelastic) and velocity-insensitive (elastic) components; these force components are seen also in isolated cardiac myofibrils or skinned cells devoid of collagen. Here we examine the cellular/myofibrillar origins of passive force and describe the contribution of titin, or interactions involving titin, to individual passive-force components. We construct force-extension relationships for the four distinct elastic regions of cardiac titin, using results of in situ titin segment-extension studies and force measurements on isolated cardiac myofibrils. Then, we compare these relationships with those calculated for each region with the wormlike-chain (WLC) model of entropic polymer elasticity. Parameters used in the WLC calculations were determined experimentally by single-molecule atomic force-microscopy measurements on engineered titin domains. The WLC modelling faithfully predicts the steady-state-force vs. extension behavior of all cardiac-titin segments over much of the physiological SL range. Thus, the elastic-force component of cardiac myofibrils can be described in terms of the entropic-spring properties of titin segments. In contrast, entropic elasticity cannot account for the passive-force decay of cardiac myofibrils following quick stretch (stress relaxation). Instead, slower (viscoelastic) components of stress relaxation could be simulated by using a Monte-Carlo approach, in which unfolding of a few immunoglobulin domains per titin molecule explains the force decay. Fast components of stress relaxation (viscous drag) result mainly from interaction between actin and titin filaments; actin extraction of cardiac sarcomeres by gelsolin immediately suppressed the quickly decaying force transients. The combined results reveal the sources of velocity sensitive and insensitive force components of cardiomyofibrils stretched in diastole.
引用
收藏
页码:483 / 497
页数:15
相关论文
共 72 条
[1]   THE CELLULAR BASIS OF THE LENGTH TENSION RELATION IN CARDIAC-MUSCLE [J].
ALLEN, DG ;
KENTISH, JC .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1985, 17 (09) :821-840
[2]   Protein structure: Stretching the limits [J].
Alper, J .
SCIENCE, 2002, 297 (5580) :329-331
[3]   Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications [J].
Anderson, J ;
Joumaa, V ;
Stevens, L ;
Neagoe, C ;
Li, Z ;
Mounier, Y ;
Linke, WA ;
Goubel, F .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2002, 444 (06) :771-776
[4]   The complete gene sequence of titin, expression of an unusual ≈700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system [J].
Bang, ML ;
Centner, T ;
Fornoff, F ;
Geach, AJ ;
Gotthardt, M ;
McNabb, M ;
Witt, CC ;
Labeit, D ;
Gregorio, CC ;
Granzier, H ;
Labeit, S .
CIRCULATION RESEARCH, 2001, 89 (11) :1065-1072
[5]   Basis of passive tension and stiffness in isolated rabbit myofibrils [J].
Bartoo, ML ;
Linke, WA ;
Pollack, GH .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1997, 273 (01) :C266-C276
[6]   ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA [J].
BUSTAMANTE, C ;
MARKO, JF ;
SIGGIA, ED ;
SMITH, S .
SCIENCE, 1994, 265 (5178) :1599-1600
[7]   A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle [J].
Campbell, KS ;
Lakie, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 510 (03) :941-962
[8]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699
[9]   Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fisher, TE ;
Marszalek, PE ;
Li, HB ;
Fernandez, JM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 74 (1-2) :63-91
[10]   INTERNAL VISCOELASTIC LOADING IN CAT PAPILLARY-MUSCLE [J].
CHIU, YL ;
BALLOU, EW ;
FORD, LE .
BIOPHYSICAL JOURNAL, 1982, 40 (02) :109-120