Chlorinated herbicide (triallate) dehalogenation by iron powder

被引:18
作者
Volpe, A [1 ]
Lopez, A [1 ]
Mascolo, G [1 ]
Detomaso, A [1 ]
机构
[1] CNR, Ist Ric Sulle Acque, Sez Bari, I-70123 Bari, Italy
关键词
zero-valent iron; reductive dehalogenation; chlorinated pesticides; groundwater remediation;
D O I
10.1016/j.chemosphere.2004.06.040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The reductive degradation of a chlorinated herbicide by iron powder was investigated at lab scale. The studied substrate was triallate (S-2,3,3-trichloroallyl di-isopropyl thiocarbamate) which contains a trichloroethylene moiety potentially reducible by zero-valent iron. Degradation reactions were carried out in batch, at 25 degreesC, in the absence of oxygen, by contacting electrolytic iron powder (size range: 20-50 mum) with a triallate aqueous solution (2.5 mg l(-1)). Herbicide decay, corresponding evolutions of TOC, TOX and chloride ion release were regularly monitored throughout the reactions. Furthermore, the main degradation by-products were identified by HPLC/MS. The results showed that, after 5 days, herbicide degradation extent was about 97% and that the reaction proceeded through the formation of a dechlorinated alkyne by-product (S-2-propinyl di-isopropyl thiocarbamate) resulting from the complete dechlorination of triallate. The subsequent reduction of such an alkyne intermediate gave S-allyl di-isopropyl thiocarbamate as main end by-product. The identified by-products suggested that dechlorination took place mainly via reductive P-elimination. However, as traces of dichloroallyl di-isopropyl thiocarbamate were also detected, a role, although minor, was assigned even to hydrogenolysis in the overall dechlorination process. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:579 / 586
页数:8
相关论文
共 37 条
[1]   Reduction of nitro aromatic compounds by zero-valent iron metal [J].
Agrawal, A ;
Tratnyek, PG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (01) :153-160
[2]   Reductive transformation and sorption of cis- and trans-1,2-dichloroethene in a metallic iron-water system [J].
AllenKing, RM ;
Halket, RM ;
Burris, DR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1997, 16 (03) :424-429
[3]   Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles [J].
Arnold, WA ;
Roberts, AL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (09) :1794-1805
[4]   SORPTION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE IN A BATCH REACTIVE METALLIC IRON-WATER SYSTEM [J].
BURRIS, DR ;
CAMPBELL, TJ ;
MANORANJAN, VS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (11) :2850-2855
[5]   Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system [J].
Campbell, TJ ;
Burris, DR ;
Roberts, AL ;
Wells, JR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1997, 16 (04) :625-630
[6]   ZERO-VALENT IRON FOR THE IN-SITU REMEDIATION OF SELECTED METALS IN GROUNDWATER [J].
CANTRELL, KJ ;
KAPLAN, DI ;
WIETSMA, TW .
JOURNAL OF HAZARDOUS MATERIALS, 1995, 42 (02) :201-212
[7]   Pesticide chemical oxidation: state-of-the-art [J].
Chiron, S ;
Fernandez-Alba, A ;
Rodriguez, A ;
Garcia-Calvo, E .
WATER RESEARCH, 2000, 34 (02) :366-377
[8]   Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0 [J].
Choe, S ;
Lee, SH ;
Chang, YY ;
Hwang, KY ;
Khim, J .
CHEMOSPHERE, 2001, 42 (04) :367-372
[9]   Reduction of vinyl chloride in metallic iron-water systems [J].
Deng, BL ;
Burris, DR ;
Campbell, TJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (15) :2651-2656
[10]   Field assessment of nanoscale biometallic particles for groundwater treatment [J].
Elliott, DW ;
Zhang, WX .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (24) :4922-4926