A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain

被引:719
作者
Ge, Shaoyu
Yang, Chih-hao
Hsu, Kuei-sen
Ming, Guo-li
Song, Hongjun [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD 21205 USA
[4] Natl Cheng Kung Univ, Coll Med, Dept Pharmacol, Tainan 701, Taiwan
关键词
D O I
10.1016/j.neuron.2007.05.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Active adult neurogenesis occurs in discrete brain regions of all mammals and is widely regarded as a neuronal replacement mechanism. Whether adult-born neurons make unique contributions to brain functions is largely unknown. Here we systematically characterized synaptic plasticity of retrovirally labeled adult-born dentate granule cells at different stages during their neuronal maturation. We identified a critical period between 1 and 1.5 months of the cell age when adult-born neurons exhibit enhanced long-term potentiation with increased potentiation amplitude and decreased induction threshold. Furthermore, such enhanced plasticity in adult-born neurons depends on developmentally regulated synaptic expression of NR2B-containing NMDA receptors. Our study demonstrates that adult-born neurons exhibit the same classic critical period plasticity as neurons in the developing nervous system. The transient nature of such enhanced plasticity may provide a fundamental mechanism allowing adult-born neurons within the critical period to serve as major mediators of experience-induced plasticity while maintaining stability of the mature circuitry.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 47 条
[1]   Adult neurogenesis: From precursors to network and physiology [J].
Abrous, DN ;
Koehl, M ;
Le Moal, M .
PHYSIOLOGICAL REVIEWS, 2005, 85 (02) :523-569
[2]   Potential role for adult neurogenesis in the encoding of time in new memories [J].
Aimone, James B. ;
Wiles, Janet ;
Gage, Fred H. .
NATURE NEUROSCIENCE, 2006, 9 (06) :723-727
[3]   NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J].
Barria, A ;
Malinow, R .
NEURON, 2005, 48 (02) :289-301
[4]   NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses [J].
Barth, AL ;
Malenka, RC .
NATURE NEUROSCIENCE, 2001, 4 (03) :235-236
[5]  
CAMERON HA, 1995, J NEUROSCI, V15, P4687
[6]   Becoming a new neuron in the adult olfactory bulb [J].
Carleton, A ;
Petreanu, LT ;
Lansford, R ;
Alvarez-Buylla, A ;
Lledo, PM .
NATURE NEUROSCIENCE, 2003, 6 (05) :507-518
[7]   Cortical rewiring and information storage [J].
Chklovskii, DB ;
Mel, BW ;
Svoboda, K .
NATURE, 2004, 431 (7010) :782-788
[8]  
Cull-Candy S.G., 2004, SCI STKE 2004, V2004
[9]  
Cull-Candy SG, 2004, SCI STKE, DOI 10.1126/stke.2552004re16
[10]   Young and excitable: the function of new neurons in the adult mammalian brain [J].
Doetsch, F ;
Hen, R .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (01) :121-128