Approximating the impact of sorption on biodegradation kinetics in soil-water systems

被引:19
作者
Gamerdinger, AP
Achin, RS
Traxler, RW
机构
[1] UNIV RHODE ISL,DEPT FOOD SCI & NUTR,KINGSTON,RI 02881
[2] UNIV RHODE ISL,DEPT NAT RESOURCES SCI,KINGSTON,RI 02881
关键词
D O I
10.2136/sssaj1997.03615995006100060012x
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Naphthalene sorption and biodegradation were quantified in three soils of varying organic C content using miscible displacement and batch incubation techniques. As anticipated, sorption increased with organic C content; the sorption rate coefficient and equilibrium sorption constant (K-d) were inversely related, Organic matter in solution (NOM) from the high-organic-matter soil decreased apparent sorption, which was also quantified using methanol as a cosolvent, A cosolvency power of 3.8 or 4.1 was determined, The initial biodegradation rate decreased with increasing sorption and was a function of naphthalene concentration in solution, The extent of biodegradation was greatest in the high-organic-matter soil and decreased when NOM was removed from the system, The observed dependence of biodegradation kinetics on sorption (this study and in the literature) prompted us to develop a simple approach for approximating a biodegradation rate constant for soil-water systems, This approach combines independently determined sorption parameters with the biodegradation rate constant determined for aqueous (soil-free) solution, The approach was applied to our data and to published data where sorption was shown to control naphthalene biodegradation, The approximated biodegradation rate constant was within 10% of the measured values for three cases, 20% for a fourth case, and was underestimated by five- to sevenfold for the high-organic-matter soil, The approach will be useful when applying management models for predicting contaminant fate and transport that require a degradation rate constant, or for estimating biodegradation rates in situations where cultured organisms are introduced for biodegradation.
引用
收藏
页码:1618 / 1626
页数:9
相关论文
共 39 条
[1]   CONCEPTS OF SOLUTE LEACHING IN SOILS - A REVIEW OF MODELING APPROACHES [J].
ADDISCOTT, TM ;
WAGENET, RJ .
JOURNAL OF SOIL SCIENCE, 1985, 36 (03) :411-424
[2]  
ALEXANDER M, 1989, SSSA SPEC PUBL, V22, P243
[3]  
[Anonymous], SOIL SCI SOC AM SPEC
[4]   EVALUATION OF SOME NEW TRACERS FOR SOIL-WATER STUDIES [J].
BOWMAN, RS .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1984, 48 (05) :987-993
[6]   DETERMINISTIC 3-HALF-ORDER KINETIC-MODEL FOR MICROBIAL-DEGRADATION OF ADDED CARBON SUBSTRATES IN SOIL [J].
BRUNNER, W ;
FOCHT, DD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 47 (01) :167-172
[7]   SORPTION KINETICS OF ORGANIC-CHEMICALS - EVALUATION OF GAS-PURGE AND MISCIBLE-DISPLACEMENT TECHNIQUES [J].
BRUSSEAU, ML ;
JESSUP, RE ;
RAO, PSC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1990, 24 (05) :727-735
[8]   SORPTION NONIDEALITY DURING ORGANIC CONTAMINANT TRANSPORT IN POROUS-MEDIA [J].
BRUSSEAU, ML ;
RAO, PSC .
CRITICAL REVIEWS IN ENVIRONMENTAL CONTROL, 1989, 19 (01) :33-99
[9]   CONVECTIVE-DISPERSIVE SOLUTE TRANSPORT WITH A COMBINED EQUILIBRIUM AND KINETIC ADSORPTION MODEL [J].
CAMERON, DR ;
KLUTE, A .
WATER RESOURCES RESEARCH, 1977, 13 (01) :183-188
[10]   EFFECT OF ORGANIC-SOLVENT ON SORPTION OF AROMATIC SOLUTES ONTO SOILS [J].
FU, JK ;
LUTHY, RG .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1986, 112 (02) :346-366