Phophophoryns (PPs) are unique aspartic acid and phosphoserine-rich proteins present in all species of dentin. Rat incisor odontoblast cDNA libraries contain messages encoding several acidic phosphorylated, serine-rich proteins. At least two of these share a common C-terminal domain coding region sequence. The polypeptide sequences in the N-terminal direction immediately adjacent to the conserved C-terminal domains of these two proteins (DMP2, DMP3) are distinctly different. In this domain, the DMP2 has extensive sequences of (DSS)(n) repeats with n as large as 24. DMP3 has fewer and shorter triplet seqnences, n = 3,4. The major rat incisor PPs (90-95 kDa) probably have the (DSS)(n>3). We propose that the name phosphophoryn be reserved for the extracellular matrix proteins with these extended repeats. DMP1, although strongly acidic, does not fit this category. If the S residues are phosphorylated and n>3, conformational energy minimization computations show the (DSS)(n) sequence to assume a unique extended structure with parallel arrays of carboxylate and phosphate groups which may function as Ca2+ ion interaction edges. The phosphorylation of recombinant DMP2 C-terminal domain by various kinases has been examined. The repeat domains are not direct substrates for the CK2-like kinases but the kinases act in concert, so that the phosphorylation is hierarchical, apparently controlled by the presence of specific interruptions between the triplet domains.