Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor

被引:259
作者
Zhao, Dan-Dan [1 ]
Bao, Shu-Juan [1 ]
Zhou, Wen-Ha [1 ]
Li, Hu-Lin [1 ]
机构
[1] Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
nanoporous nickel hydroxide film; hexagonal lyotropic liquid crystal template; electrodeposition; electrochemical capacitors (ECs); LIQUID-CRYSTALLINE PHASES; OXIDE; MANGANESE; ELECTRODE; SUPERCAPACITOR; DEPOSITION; STORAGE; SURFACE;
D O I
10.1016/j.elecom.2006.11.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanoporous nickel hydroxide film has been successfully electrodeposited on titanium substrate from nickel nitrate dissolved in the aqueous domains of the hexagonal lyotropic liquid crystalline phase of Brij 56. Low-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies show that the film has a regular nanostructure consisting of a hexagonal array of cylindrical pores with a repeat center-to-center spacing of about 7 nm. Preliminary electrochemical studies are carried out using cyclic voltammetry (CV) and chronopotentiometry technology. A maximum specific capacitance of 578 F g(-1) could be achieved for the nanoporous Ni(OH)(2) film electrode, suggesting its potential application in electrochemical capacitors. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 26 条
[1]   Mesoporous platinum films from lyotropic liquid crystalline phases [J].
Attard, GS ;
Bartlett, PN ;
Coleman, NRB ;
Elliott, JM ;
Owen, JR ;
Wang, JH .
SCIENCE, 1997, 278 (5339) :838-840
[2]   The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases [J].
Bartlett, PN ;
Gollas, B ;
Guerin, S ;
Marwan, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (15) :3835-3842
[3]   Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance [J].
Cao, L ;
Lu, M ;
Li, HL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A871-A875
[4]   Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density [J].
Cao, L ;
Xu, F ;
Liang, YY ;
Li, HL .
ADVANCED MATERIALS, 2004, 16 (20) :1853-+
[5]   Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage [J].
Cao, L ;
Kong, LB ;
Liang, YY ;
Li, HL .
CHEMICAL COMMUNICATIONS, 2004, (14) :1646-1647
[6]  
Conway B.E., 1999, ELECTROCHEMICAL SUPE
[7]   Preparation of high surface area nickel electrodeposit using a liquid crystal template technique [J].
Ganesh, V ;
Lakshminarayanan, V .
ELECTROCHIMICA ACTA, 2004, 49 (21) :3561-3572
[8]   Electrochemical supercapacitor material based on manganese oxide: preparation and characterization [J].
Jiang, JH ;
Kucernak, A .
ELECTROCHIMICA ACTA, 2002, 47 (15) :2381-2386
[9]  
KARNATH PV, 1994, J ELECTROCHEM SOC, V141, P2956
[10]   Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors [J].
Lin, C ;
Ritter, JA ;
Popov, BN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4097-4103