Incorporation of transition-metal complexes in functionalized mesoporous silica and their activity toward the oxidation of aromatic amines

被引:84
作者
Evans, J [1 ]
Zaki, AB
El-Sheikh, MY
El-Safty, SA
机构
[1] Univ Southampton, Dept Chem, Southampton S017 1BJ, Hants, England
[2] Tanta Univ, Fac Sci, Dept Chem, Tanta, Egypt
关键词
D O I
10.1021/jp000564p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly ordered mesoporous material HISiO2 was prepared at room temperature and low pH utilizing a high concentration of nonionic surfactant to achieve a hexagonal ordered phase with a pore size of similar to3.5 nm. The grafted amino ligand was covalently bonded to the internal pore surface of HISiO2 through a silanation procedure. Thereby, immobilized transition-metal-aquo complexes such as Mn-II-aquo (I), Cu-II-aquo (II), Co-II-aquo (III), and Zn-II-aquo (IV) were coordinated to the supported wall without impregnation on the surface. Diffuse reflectance spectroscopy (DRS) and electron paramagnetic resonance (EPR) studies observed that a proportion of the Mn-II complex was oxidized to a higher oxidation state, particularly Mn-IV. The kinetics and mechanism of redox reactions between o-aminophenol, o-phenylenediamine, and p-pheneylenediamine and the incorporated transition-metal-aquo-propylamine complexes have been investigated. The oxidation products of the amines have been monitored by UV-vis spectroscopy. The reaction follows first-order kinetics, and the rate constant of the oxidation of amines decreases in the following order: Mn-IV/Mn-II --> Cu-II --> Con --> Zn-II. This trend is attributed to the reduction potential of the metal ions in the reaction medium. The most obvious feature of the oxidation reaction of amines with complexes III and IV is that there is a well-defined induction time, whose rate depends on the reactivity and the initial concentration of these amines, prior to a rapid growth in the production of the oxidation product of amines. The experimental results indicate that the outer-sphere mechanism is probably followed in this redox system. Extensive studies of the transition-metal complexes on HISiO2 have been conducted before and after the redox reaction by a wide variety of characterization techniques which include powder X-ray diffraction, DRS, the Bnxnauer-Emmett-Teller method for nitrogen adsorption and surface area measurements, NMR, EPR, and IR.
引用
收藏
页码:10271 / 10281
页数:11
相关论文
共 106 条
  • [1] [Anonymous], 1990, INORG CHEM
  • [2] ARMENGAL E, 1995, J APPL CATAL A, V149, P411
  • [3] LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA
    ATTARD, GS
    GLYDE, JC
    GOLTNER, CG
    [J]. NATURE, 1995, 378 (6555) : 366 - 368
  • [4] Inorganic nanostructures from lyotropic liquid crystal phases
    Attard, GS
    Edgar, M
    Goltner, CG
    [J]. ACTA MATERIALIA, 1998, 46 (03) : 751 - 758
  • [5] TEMPLATING OF MESOPOROUS MOLECULAR-SIEVES BY NONIONIC POLYETHYLENE OXIDE SURFACTANTS
    BAGSHAW, SA
    PROUZET, E
    PINNAVAIA, TJ
    [J]. SCIENCE, 1995, 269 (5228) : 1242 - 1244
  • [6] Mesoporous alumina molecular sieves
    Bagshaw, SA
    Pinnavaia, TJ
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1996, 35 (10): : 1102 - 1105
  • [7] BANSCH B, 1991, INORG CHEM, V30, P4555
  • [8] MECHANISM OF BASE PROMOTED REDUCTION OF NICKEL(III) COMPLEXES OF MACROCYCLIC AMINES - COORDINATED LIGAND RADICAL INTERMEDIATE
    BAREFIELD, EK
    MOCELLA, MT
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (15) : 4238 - 4246
  • [9] PHENOXAZINONE SYNTHASE - MECHANISM FOR THE FORMATION OF THE PHENOXAZINONE CHROMOPHORE OF ACTINOMYCIN
    BARRY, CE
    NAYAR, PG
    BEGLEY, TP
    [J]. BIOCHEMISTRY, 1989, 28 (15) : 6323 - 6333
  • [10] A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES
    BECK, JS
    VARTULI, JC
    ROTH, WJ
    LEONOWICZ, ME
    KRESGE, CT
    SCHMITT, KD
    CHU, CTW
    OLSON, DH
    SHEPPARD, EW
    MCCULLEN, SB
    HIGGINS, JB
    SCHLENKER, JL
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) : 10834 - 10843