Iron optimization for fenton-driven oxidation of MTBE-spent granular activated carbon

被引:54
作者
Huling, Scott G. [1 ]
Jones, Patrick K. [1 ]
Lee, Tony R. [1 ]
机构
[1] US EPA, Off Res & Dev, Natl Risk Management Res Lab, Ada, OK 74820 USA
关键词
D O I
10.1021/es062666k
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H2O2) (15.9 g/L; pH 3). The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4 center dot 7H(2)O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H2O2 reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (mu g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H2O2 reaction was Fe limited. At higher Fe concentrations, the H2O2 reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H2O2 transport, unavailable Fe, and limitations in H2O2 diffusive transport, and emphasize the importance of optimal Fe loading.
引用
收藏
页码:4090 / 4096
页数:7
相关论文
共 22 条
[1]  
Ashcroft C.T., 1992, P AM WAT WORKS ASS A, P191
[2]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[3]  
CORNELL RM, 1989, J CHEM TECHNOL BIOT, V46, P115
[4]   A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2 [J].
De Laat, J ;
Le, GT ;
Legube, B .
CHEMOSPHERE, 2004, 55 (05) :715-723
[5]  
De Las Casas C. L., 2006, ACS SYM SER, V940, P43
[6]  
HAYDEN R, 2001, COMMUNICATION
[7]   Fenton-driven chemical regeneration of MTBE-spent GAC [J].
Huling, SG ;
Jones, PK ;
Ela, WP ;
Arnold, RG .
WATER RESEARCH, 2005, 39 (10) :2145-2153
[8]   Repeated reductive and oxidative treatments of granular activated carbon [J].
Huling, SG ;
Jones, PK ;
Ela, WP ;
Arnold, RG .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2005, 131 (02) :287-297
[9]   Contaminant adsorption and oxidation via Fenton reaction [J].
Huling, SG ;
Arnold, RG ;
Sierka, RA ;
Jones, PK ;
Fine, DD .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 2000, 126 (07) :595-600
[10]   Measurement of hydroxyl radical activity in a soil slurry using the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone [J].
Huling, SG ;
Arnold, RG ;
Sierka, RA ;
Miller, MR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (21) :3436-3441