Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals

被引:40
作者
Chon, Bonghwan [1 ]
Lim, Sung Jun [1 ]
Kim, Wonjung [1 ]
Seo, Jongcheol [1 ]
Kang, Hyeonggon [2 ]
Joo, Taiha [1 ]
Hwang, Jeeseong [2 ]
Shin, Seung Koo [1 ]
机构
[1] Pohang Univ Sci & Technol, Bionanotechnol Ctr, Dept Chem, Pohang 790784, Kyungbuk, South Korea
[2] Natl Inst Stand & Technol, Phys Lab, Opt Technol Div, Gaithersburg, MD 20899 USA
关键词
SINGLE SEMICONDUCTOR NANOCRYSTALS; COLLOIDAL QUANTUM DOTS; FLUORESCENCE INTERMITTENCY; WAVELENGTH DEPENDENCE; EMISSION INTENSITY; NANORODS; WATER; SUPPRESSION; LIFETIMES; BEHAVIOR;
D O I
10.1039/b924917f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Blinking of zinc blende CdSe-based core/shell nanocrystals is studied as a function of shell materials and surface ligands. CdSe/ZnS, CdSe/ZnSe/ZnS and CdSe/CdS/ZnS core/shell nanocrystals are prepared by colloidal synthesis and six monolayers of larger bandgap shell materials are grown over the CdSe core. Organic-soluble nanocrystals covered with stearate are made water-soluble by ligand exchange with 3-mercaptopropionic acid. The light-emitting states of nanocrystals are characterized by absorption and emission spectroscopy as well as photoluminescence lifetime measurements in solution. The blinking time trace is recorded for single nanocrystals on a glass coverslip. Both on-and off-time distributions are fitted to the power law. The power-law exponents vary, depending on shell materials and surface ligands. The off-time exponents for organic and water-soluble nanocrystals are measured in the range of 1.36-1.55 and 1.25-1.37, respectively, while their on-time exponents are spread in the range of 1.53-1.86 and 1.85-2.17, respectively. Water-soluble surface passivation with thiolate prolongs the dark period regardless of shell materials and core/shell structures. Of the core/shell structures, CdSe/CdS/ZnS exhibits the longest bright state. The on/off-time exponents are inversely correlated, although the successive on/off events are not individually correlated. A two competing charge-tunneling model is presented to describe the variation of on-and off-time exponents with shell materials and surface ligands.
引用
收藏
页码:9312 / 9319
页数:8
相关论文
共 52 条
[1]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[2]   Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry [J].
Chattopadhyay, Pratip K. ;
Price, David A. ;
Harper, Theresa F. ;
Betts, Michael R. ;
Yu, Joanne ;
Gostick, Emma ;
Perfetto, Stephen P. ;
Goepfert, Paul ;
Koup, Richard A. ;
De Rosa, Stephen C. ;
Bruchez, Marcel P. ;
Roederer, Mario .
NATURE MEDICINE, 2006, 12 (08) :972-977
[3]   Giant multishell CdSe nanocrystal quantum dots with suppressed blinking [J].
Chen, Yongfen ;
Vela, Javier ;
Htoon, Han ;
Casson, Joanna L. ;
Werder, Donald J. ;
Bussian, David A. ;
Klimov, Victor I. ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5026-5027
[4]   Power-law intermittency of single emitters [J].
Cichos, F. ;
von Borczyskowski, C. ;
Orrit, M. .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2007, 12 (06) :272-284
[5]   Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes [J].
Fisher, BR ;
Eisler, HJ ;
Stott, NE ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01) :143-148
[6]   Solution control of radiative and nonradiative lifetimes: A novel contribution to quantum dot blinking suppression [J].
Fomenko, Vasiliy ;
Nesbitt, David J. .
NANO LETTERS, 2008, 8 (01) :287-293
[7]   Explanation of quantum dot blinking without the long-lived trap hypothesis [J].
Frantsuzov, PA ;
Marcus, RA .
PHYSICAL REVIEW B, 2005, 72 (15)
[8]   Universal emission intermittency in quantum dots, nanorods and nanowires [J].
Frantsuzov, Pavel ;
Kuno, Masaru ;
Janko, Boldizsar ;
Marcus, Rudolph A. .
NATURE PHYSICS, 2008, 4 (07) :519-522
[9]   Model of Fluorescence Intermittency of Single Colloidal Semiconductor Quantum Dots Using Multiple Recombination Centers [J].
Frantsuzov, Pavel A. ;
Volkan-Kacso, Sandor ;
Janko, Boldizsar .
PHYSICAL REVIEW LETTERS, 2009, 103 (20)
[10]   Optical properties of single semiconductor nanocrystals [J].
Gomez, Daniel E. ;
Califano, Marco ;
Mulvaney, Paul .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (43) :4989-5011