Nonvisual responses to light exposure in the human brain during the circadian night

被引:96
作者
Perrin, F
Peigneux, P
Fuchs, S
Verhaeghe, S
Laureys, S
Middleton, B
Degueldre, C
Del Fiore, G
Vandewalle, G
Balteau, E
Poirrier, R
Moreau, V
Luxen, A
Maquet, P [1 ]
Dijk, DJ
机构
[1] Univ Liege, Ctr Rech Cyclotron B30, B-4000 Liege, Belgium
[2] Univ Lyon 1, Unite Mixte Rech 5020, CNRS, F-69007 Lyon, France
[3] Univ Surrey, Surrey Sleep Res Ctr, Guildford GU2 7XP, Surrey, England
[4] Ctr Hosp Univ, Dept Neurol B35, B-4000 Liege, Belgium
[5] Univ Liege, Dept Phys B5, B-4000 Liege, Belgium
基金
英国惠康基金;
关键词
D O I
10.1016/j.cub.2004.09.082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The brain processes light information to visually represent the environment but also to detect changes in ambient light level. The latter information induces non-image-forming responses and exerts powerful effects on physiology such as synchronization of the circadian clock and suppression of melatonin [1, 2,3]. In rodents, irradiance information is transduced from a discrete subset of photosensitive retinal ganglion cells via the retinohypothalamic tract to various hypothalamic and brainstem regulatory structures including the hypothalamic suprachiasmatic nuclei, the master circadian pacemaker [4,5,6]. In humans, light also acutely modulates alertness [7, 8], but the cerebral correlates of this effect are unknown. We assessed regional cerebral blood flow in 13 subjects attending to auditory and visual stimuli in near darkness following light exposures (>8000 lux) of different durations (0.5,17,16.5, and 0 min) during the biological night. The bright broadband polychromatic light suppressed melatonin and enhanced alertness. Functional imaging revealed that a large-scale occipito-parietal attention network, including the right intraparietal sulcus, was more active in proportion to the duration of light exposures preceding the scans. Activity in the hypothalamus decreased in proportion to previous illumination. These findings have important implications for understanding the effects of light on human behavior.
引用
收藏
页码:1842 / 1846
页数:5
相关论文
共 30 条
[1]   SUBJECTIVE AND OBJECTIVE SLEEPINESS IN THE ACTIVE INDIVIDUAL [J].
AKERSTEDT, T ;
GILLBERG, M .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1990, 52 (1-2) :29-37
[2]   A neural circuit for circadian regulation of arousal [J].
Aston-Jones, G ;
Chen, S ;
Zhu, Y ;
Oshinsky, ML .
NATURE NEUROSCIENCE, 2001, 4 (07) :732-738
[3]   BRIGHT LIGHT EFFECTS ON BODY-TEMPERATURE, ALERTNESS, EEG AND BEHAVIOR [J].
BADIA, P ;
MYERS, B ;
BOECKER, M ;
CULPEPPER, J ;
HARSH, JR .
PHYSIOLOGY & BEHAVIOR, 1991, 50 (03) :583-588
[4]   VISUAL RECEPTIVE-FIELD ORGANIZATION AND CORTICO-CORTICAL CONNECTIONS OF THE LATERAL INTRAPARIETAL AREA (AREA LIP) IN THE MACAQUE [J].
BLATT, GJ ;
ANDERSEN, RA ;
STONER, GR .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 299 (04) :421-445
[5]  
Brainard GC, 2001, J NEUROSCI, V21, P6405
[6]   Neural correlates of auditory-visual stimulus onset asynchrony detection [J].
Bushara, KO ;
Grafman, J ;
Hallett, M .
JOURNAL OF NEUROSCIENCE, 2001, 21 (01) :300-304
[7]   Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness [J].
Cajochen, C ;
Zeitzer, JM ;
Czeisler, CA ;
Dijk, DJ .
BEHAVIOURAL BRAIN RESEARCH, 2000, 115 (01) :75-83
[8]   Voluntary orienting is dissociated from target detection in human posterior parietal cortex [J].
Corbetta, M ;
Kincade, JM ;
Ollinger, JM ;
McAvoy, MP ;
Shulman, GL .
NATURE NEUROSCIENCE, 2000, 3 (03) :292-297
[9]   Non-rod, non-cone photoreception in the vertebrates [J].
Foster, RG ;
Hankins, MW .
PROGRESS IN RETINAL AND EYE RESEARCH, 2002, 21 (06) :507-527
[10]   Psychophysiological and modulatory interactions in neuroimaging [J].
Friston, KJ ;
Buechel, C ;
Fink, GR ;
Morris, J ;
Rolls, E ;
Dolan, RJ .
NEUROIMAGE, 1997, 6 (03) :218-229