Promoter structure and cell cycle dependent expression of the human methylpurine-DNA glycosylase gene

被引:41
作者
Bouziane, M
Miao, F
Bates, SE
Somsouk, L
Sang, BC
Denissenko, M
O'Connor, TR
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Dept Biol, Duarte, CA 91010 USA
[2] BD Pharmingen, San Diego, CA 92121 USA
来源
MUTATION RESEARCH-DNA REPAIR | 2000年 / 461卷 / 01期
关键词
promoter structure; cell cycle dependent expression; human methylpurine-DNA glycosylase (MPG) gene;
D O I
10.1016/S0921-8777(00)00036-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The methylpurine-DNA glycosylase (MPG) gene coding for human 3-methyladenine (3-meAde)-DNA glycosylase functions in the first step of base excision repair (BER) to remove numerous damaged bases including 3-meGua, ethenoadenine, and hypoxanthine (Hx) in addition to 3-meAde. In this report, we identify the length of the minimal MPG promoter region, demonstrate the involvement of several transcription factors in expression of the MPG gene, and determine the point at which transcription initiates. We also demonstrate that control of MPG expression is linked to MPG activity. To initiate studies on how the MPG functions with the ensemble of BER genes to effect repair, we have investigated the cell cycle control of MPG and other EER genes in normal human cells. Steady-state mRNA levels of MPG, human Nth homologue (NTH), and uracil-DNA glycosylase (UDG), DNA glycosylases, and human AP site-specific endonuclease (APE), an endonuclease incising DNA at abasic sites, are cell cycle dependent. In contrast, expression levels of genes coding for human 8-oxoguanine-DNA glycosylase (OGG1) and TDG DNA glycosylases, and O6-methylguanine-DNA methyltransferase (MGMT) gene, and the RPA4 subunit gene do not vary with cell cycle. These observed cell cycle dependent differences might reflect distinct roles of individual EER proteins in mutation avoidance. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 63 条
  • [1] STRUCTURE, PROMOTER ANALYSIS AND CHROMOSOMAL ASSIGNMENT OF THE HUMAN APEX GENE
    AKIYAMA, K
    SEKI, S
    OSHIDA, T
    YOSHIDA, MC
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1994, 1219 (01): : 15 - 25
  • [2] Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III
    Aspinwall, R
    Rothwell, DG
    RoldanArjona, T
    Anselmino, C
    Ward, CJ
    Cheadle, JP
    Sampson, JR
    Lindahl, T
    Harris, PC
    Hickson, ID
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) : 109 - 114
  • [3] Ausubel F.M., 1992, SHORT PROTOCOLS MOL, V2nd
  • [4] ESCHERICHIA-COLI ENDONUCLEASE-III IS NOT AN ENDONUCLEASE BUT A BETA-ELIMINATION CATALYST
    BAILLY, V
    VERLY, WG
    [J]. BIOCHEMICAL JOURNAL, 1987, 242 (02) : 565 - 572
  • [5] The retinoblastoma protein pathway and the restriction point
    Bartek, J
    Bartkova, J
    Lukas, J
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (06) : 805 - 814
  • [6] Stress responses to DNA damaging agents in the human colon carcinoma cell line, RKO
    Beard, SE
    Capaldi, SR
    Gee, P
    [J]. MUTATION RESEARCH-GENETIC TOXICOLOGY, 1996, 371 (1-2): : 1 - 13
  • [7] Release of normal bases from intact DNA by a native DNA repair enzyme
    Berdal, KG
    Johansen, RF
    Seeberg, E
    [J]. EMBO JOURNAL, 1998, 17 (02) : 363 - 367
  • [8] Repair of DNA alkylation damage
    Bouziane, M
    Miao, F
    Ye, N
    Holmquist, G
    Chyzak, G
    O'Connor, TR
    [J]. ACTA BIOCHIMICA POLONICA, 1998, 45 (01) : 191 - 202
  • [9] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [10] BRENT TP, 1984, CANCER RES, V44, P1887