Silicon-Based Plasmonics for On-Chip Photonics

被引:139
作者
Dionne, Jennifer A. [1 ]
Sweatlock, Luke A. [2 ]
Sheldon, Matthew T. [1 ]
Alivisatos, A. Paul [1 ]
Atwater, Harry A. [3 ,4 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA
[3] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[4] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Enhanced spontaneous emission; nanophotonics; optical modulation; plasmon waveguides; surface plasmon; WAVE-GUIDES; ACTIVE PLASMONICS; SURFACE-PLASMONS; QUANTUM DOTS; POLARITON; LIGHT; THIN; NANOCRYSTALS; MODULATION; EXCITATION;
D O I
10.1109/JSTQE.2009.2034983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon-based photonic devices dissipate substantially less power and provide a significantly greater information bandwidth than electronic components. Unfortunately, large-scale integration of photonic devices has been limited by their large, wavelength-scale size and the weak optical response of Si. Surface plasmons may overcome these two limitations. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Si-based plasmonics has the potential to not only reduce the size of photonic components to deeply subwavelength scales, but also to enhance the emission, detection, and manipulation of optical signals in Si. In this paper, we discuss recent advances in Si-based plasmonics, including subwavelength interconnects, modulators, and emission sources. From scales spanning slab waveguides to single nanocrystals, we show that Si-based plasmonics can enable optical functionality competitive in size and speed with contemporary electronic components.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 85 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[3]   Active Plasmonics: Surface Plasmon Interaction With Optical Emitters [J].
Ambati, Muralidhar ;
Genov, Dentcho A. ;
Oulton, Rupert F. ;
Zhang, Xiang .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (06) :1395-1403
[4]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[5]  
BERINI P, 2001, PHYS REV B, V63
[6]   Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters [J].
Biteen, JS ;
Pacifici, D ;
Lewis, NS ;
Atwater, HA .
NANO LETTERS, 2005, 5 (09) :1768-1773
[7]   Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment [J].
Biteen, Julie S. ;
Sweatlock, Luke A. ;
Mertens, Hans ;
Lewis, Nathan S. ;
Polman, Albert ;
Atwater, Harry A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (36) :13372-13377
[8]  
Bohr M., 2006, Intels silicon research and development pipeline
[9]   Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons [J].
Boltasseva, A ;
Bozhevolnyi, SI ;
Sondergaard, T ;
Nikolajsen, T ;
Leosson, K .
OPTICS EXPRESS, 2005, 13 (11) :4237-4243
[10]   Near field detector for integrated surface plasmon resonance biosensor applications [J].
Bora, Mihail ;
Celebi, Kemal ;
Zuniga, Jorge ;
Watson, Colin ;
Milaninia, Kaveh M. ;
Baldo, Marc A. .
OPTICS EXPRESS, 2009, 17 (01) :329-336